MLPR 2017  |  Notes  |  Log  |  Forum  |  Tutorials  |  Assignments  |  Feedback

MLPR class notes

This is an archive of a previous version of the course. The 2018/19 notes are here.

You can step through the HTML version of these notes using the left and right arrow keys.

Each note links to a PDF version for better printing. However, if possible, please annotate the HTML versions of the notes in the forum, to keep the class's comments together. If the HTML notes don't render well for you, I suggest trying in Chrome/Chromium. If you want quick access to the PDFs from this page, you can toggle the pdf links.

A rough indication of the schedule is given, although we won’t follow it exactly.

Background information

Week 1:

Week 2:

Week 3:

Week 4:

Week 5:

Week 6:

Week 7:

Week 8:

Week 9:

Week 10:


A coarse overview of major topics covered is below. Some principles aren't taught alone as they're useful in multiple contexts, such as gradient-based optimization, different regularization methods, ethics, and practical choices such as feature engineering or numerical implementation.

You are encouraged to write your own outlines and summaries of the course. Aim to make connections between topics, and imagine trying to explain to someone else what the main concepts of the course are.


MLPR 2017  |  Notes  |  Forum  |  Tutorials  |  Assignments  |  FAQ  |  Feedback