
Neural networks introduction
Linear models and generalized linear models (logistic regression et al.) are easy to fit. Least
squares linear regression has a direct solution (unless the number of parameters is huge1).
The other variants can be fitted with gradient descent, and logistic/softmax regression has a
convex cost function2, so we can still find the best possible fit to the training set (a global
optimum).

I like linear models. If I were consulting, and thought that a linear model might solve a
problem, I would at least start there. The code would be simple. And the results would be
fairly reproducible because I could get the same fit every time if I used a good optimizer.
Even if I needed something more complicated in the end, I’d at least have a baseline that
could confirm whether a more advanced system’s performance was reasonable.

Making a linear model work well might require some insight into how to transform the
inputs and outputs (“feature engineering”). You can think of neural networks3 as linear
models with additional parts, where at least some of the feature transformations can also
be learned. Parameters are fitted for a series of stages of computation, rather than just the
weights for a single linear combination. The benefit of neural networks over linear models is
that we can learn more interesting functions. But fitting the parameters of a neural network
is harder: we might need more data, and the cost function is no longer convex.

We’ve already seen a neural net, we just didn’t fit it

We’ve already fitted non-linear functions. We simply transformed our original inputs x into
a vector of basis function values φ before applying a linear model. For example we could
make each basis function a logistic sigmoid:

φk(x) = σ((v(k))>x + b(k)),

and then take a linear combination of those to form our final function:

f (x) = w>φ(x) + b, or f (x) = σ(w>φ(x) + b).

Here I’ve chosen to put in bias parameters in the final step, rather than adding a con-
stant basis function. This function is a special case of a “neural network”. In particular a
“feedforward (artificial) neural network”, or “multilayer perceptron”.

The function has many parameters θ = {{v(k), b(k)}K
k=1, w, b}. What would make it a neural

network is if we fit all of these parameters θ to data. Rather than placing basis functions
by hand, we pick the family of basis functions, and “learn” the locations and any other
parameters from data. A neural network “learning algorithm”, is simply an optimization
procedure that fits the parameters to data, usually (but not always) a gradient-based opti-
mizer that iteratively improves a cost function. In practice, optimizers can only find a local
optimum, and in practice optimization is usually terminated before convergence to even a
local optimum.

Why is it called a neural network?

[A quick sloppy interlude — non-examinable]

1. More detail: I hesitate to say linear regression has a “closed form solution”, because a numerical algorithm
of some sort is always needed to compute the actual weights. The normal equations approach for D parameters
requires O(D3) time and O(D2) space to construct and solve the linear system. Numerical linear-algebra approaches
using standard QR decompositions (as used by Matlab’s \) or dense SVD solvers (as used by NumPy’s lstsq) cost
at least as much. I can’t use these “direct” approaches on my laptop if D is 100,000. There are a variety of possible
iterative numerical methods for large least-squares problems — including fitting with gradient-based methods. I’d
do a quick literature search, or ask someone, if I wanted to know the current state-of-the-art.
2. If cost C(w) is convex, then a straight line between two points on the function never goes below the surface:
C(αw+ (1−α)w′) ≤ αC(w) + (1−α)C(w′), where 0 ≤ α ≤ 1. It’s a stronger statement than “unimodal”, and makes
optimization a lot easier. There are whole books on convex optimization: http://stanford.edu/~boyd/cvxbook/
3. Here I am talking about the simplest “feed-forward” neural networks.

MLPR:w4b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/ 1

http://stanford.edu/~boyd/cvxbook/
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/


Why is it called a neural network? The term neural network is rooted in these models’
origins as part of connectionism — models of intelligent behaviour that are motivated by
how processes could be structured, but usually abstracted far from the biological details we
know about the brain. An accurate model of neurons in the brain would involve large sets
of stochastic differential equations; not smooth, simple, deterministic functions.

There is some basis to the neural analogy. There is electrical activity within a neuron. If a
voltage (“membrane potential”) crosses a threshold, a large spike in voltage called an action
potential occurs. This spike is seen as an input by other neurons. A neuron can be excited
or depressed to varying degrees by other neurons (it weights its inputs). Depending on the
pattern of inputs to a neuron, it too might fire or might stay silent.

In early neural network models, a unit computed a weighted combination of its input, w>x.
The unit was set to one if this weighted combination of input spikes reached a threshold
(the unit spikes), and zero otherwise (the unit remains silent). The logistic function φk(x)
is a ‘soft’ version of that original step function. We use a differentiable version of the step
function so we can fit the parameters with gradient-based methods.

Some neural network terminology, and standard processing layers

In the language of neural networks, a simple computation that takes a set of inputs and
creates an output is called a “unit”. The basis functions in our neural network above are
“logistic units”. The units before the final output of the function are called “hidden units”,
because they don’t correspond to anything we observe in our data. The feature values
{x1, x2, . . . xD} are sometimes called “visible units”.

In the neural network model above, the set of φk basis functions all use the same inputs x,
and all of the basis function values go on together to the next stage of processing. Thus these
units are said to form a “layer”. The inputs {x1, x2, . . . xD} also form a “visible layer”, which
is connected to the layer of basis functions.

The layers in simple feed-forward neural networks apply a linear transformation, and then
apply a non-linear function element-wise to the result. To compute a layer of hidden values
h(l) from the previous layer h(l−1):

h(l) = g(l)(W(l)h(l−1) + b(l)),

where each layer has a matrix of weights W(l), a vector of biases b(l), and uses some non-
linear function g(l), such as a logistic sigmoid: g(l)(a) = σ(a); or a Rectified Linear Unit
(ReLU): g(l)(a)=max(0, a).4 If we didn’t include non-linearities there wouldn’t be any point
in using multiple layers of processing (see tutorial 1).

We can define h(0) = x, so that the first hidden layer takes input from the features of our
data. Then we can add as many layers of processing we like before the final layer, which
gives the final output of our function.

Implementing the function defined by a standard neural network is very little code! A
sequence of linear transformations (matrix multiplies and maybe the addition of a bias
vector), and element-wise non-linearities.

4. A natural question from keen students at this point is: “what non-linearity should I use?”. As with many
questions in machine learning, the answer is “it depends” and “we don’t know yet”. ReLUs (named after Relu
Patrascu, a friendly sysadmin at the University of Toronto) replaced logistic sigmoids in generic hidden layers of
many neural networks as being easy to fit. However, now I would always use a PReLU instead, which have worked
better in cases I’ve tried. Now there are SELUs; I should try them too, but I doubt they will be the final word either.
Fully differentiable non-linearities like soft-plus log(1 + ea), which looks like a ReLU, will make some optimizers
happier. Logistic sigmoids are still useful as switches, used in mixtures of experts, LSTMs, and adapting models.
Although some of this work is theoretically motivated, what cross-validates the best is what ultimately wins in
practice.

MLPR:w4b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/ 2

https://en.wikipedia.org/wiki/Connectionism
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Action_potential
https://en.wikipedia.org/wiki/Action_potential
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2010_NairH10.pdf
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1701.06538
https://en.wikipedia.org/wiki/Long_short-term_memory
http://www.research.ed.ac.uk/portal/files/25128271/lhuc_final_taslp16.pdf
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/


Fitting and initialization

Neural networks are almost always fitted with gradient based optimizers, such as variants
of Stochastic Gradient Descent. I will defer how we compute the gradients to a future note.

How do we set the initial weights before calling an optimizer? Don’t set all the weights to
zero! If different hidden units (adaptable basis functions) start out with the same parameters,
they will all compute the same function of the inputs. Each unit will then get the same
gradient vector, and be updated in the same way. As each hidden unit remains the same, we
can’t fit anything much more interesting than logistic regression.

Instead we usually initialize the weights randomly. Don’t simply set all the weights using
randn() though! As a concrete example, if all your inputs were xd ∈ {−1,+1} the activation
(w(k))>x to hidden unit k would have zero mean, but typical size

√
D if there are D inputs.

(See the review of random walks on the expectations sheet.) If your units saturate, like the
logistic sigmoid, most of the gradients will be close to zero, and it will be hard for the
gradient optimizer to update the parameters to useful settings.

Summary: initialize a weight matrix that transforms K values to small random values, like
0.1*randn()/sqrt(K), assuming your input features are ∼1.

The MLP course points to Glorot and Bengio’s (2010) paper Understanding the difficulty of
training deep feedforward networks, which suggests a scaling ∝ 1/

√
K(l) + K(l−1), involving

the number of hidden units in the layer after the weights, not just before. The argument
involves the gradient computations, which I haven’t described in detail for neural networks
yet, so I will defer the interested reader to the paper or the MLP slides.

Some specialized neural network architectures have particular tricks for initializing them.
Do a literature search if you find yourself trying something other than a standard dense
feedforward network: e.g., recurrent/recursive architectures, convolutional architectures, or
memory networks. Alternatively, a pragmatic tip: if you are using a neural network toolbox,
try to process your data to have similar properties to the standard datasets that are usually
used to demonstrate that software. For example, similar dimensionality, means, variances,
sparsity (number of non-zero features). Then any initialization tricks that the software uses
are more likely to work.

Check your understanding

Have you followed the description of how the layers are composed to form a function?

Write a function in Matlab/Octave or Python+NumPy to evaluate a feedforward neural
network function on each of N scalar inputs, using two hidden layers with H1=100 and
H2=50 hidden units and a logistic sigmoid non-linearity, and a scalar output. Sample all the
weights randomly from a standard normal5. In the first instance, you could omit extra bias
parameters if you like. Plot the resulting function for inputs x ∈ [−2, 2].6 Try multiplying
the weights by 0.1 and 10, and see how the function changes. Try removing the non-linearity
in one or both hidden layers7, and see how your function changes.

Empirically, what properties make typical functions, specified by random weights, compli-
cated? You could take complicated in 1-dimension to mean “have at least several turning
points”. Are all of these properties strictly necessary for representing a complicated function?

Further reading

MacKay’s textbook Chapter 39 is on the “single neuron classifier”. The classifier described in
this chapter is precisely logistic regression, but described in neural network language. Maybe
this alternative view will help.

5. Here we don’t want small weights, as in an initialization, we want to create an example non-linear function.
6. For example: xx = (-2:0.01:2)'; ff = your_neural_net_function(xx, params); plot(xx, ff);
7. E.g. in Matlab, set g1 = @(a) a; instead of g1 = @(a) 1./(1+exp(-a));

MLPR:w4b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/ 3

http://www.jmlr.org/proceedings/papers/v9/glorot10a.html
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/


Murphy’s quick description of Neural Nets is in Section 16.5, which is followed by a literature
survey of other variants.

If you want to read more about biological neural networks and theoretical models of how
they learn, I recommend Theoretical Neuroscience by Dayan and Abbott.

MLPR:w4b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/ 4

http://www.gatsby.ucl.ac.uk/~Dayan/book/
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/

	 Neural networks introduction
	 We've already seen a neural net, we just didn't fit it
	 Why is it called a neural network?
	 Some neural network terminology, and standard processing layers
	 Fitting and initialization
	 Check your understanding
	 Further reading


