Informatics Report Series



Related Pages

Report (by Number) Index
Report (by Date) Index
Author Index
Institute Index

Title:An Architecture for Behavior-Based Reinforcement Learning
Authors: George Konidaris ; Gillian Hayes
Date: 2005
Publication Title:Adaptive Behavior
Publication Type:Journal Article Publication Status:Published
Volume No:13(1) Page Nos:5-32
This paper introduces an integration of reinforcement learning and behavior-based control designed to produce real-time learning in situated agents. The model layers a distributed and asynchronous reinforcement learning algorithm over a learned topological map and standard behavioral substrate to create a reinforcement learning complex. The topological map creates a small and task-relevant state space that aims to make learning feasible, while the distributed and asynchronous aspects of the architecture make it compatible with behavior-based design principles. We present the design, implementation and results of an experiment that requires a mobile robot to perform puck foraging in three artificial arenas using the new model, random decision making, and layered standard reinforcement learning. The results show that our model is able to learn rapidly on a real robot in a real environment, learning and adapting to change more quickly than both alternatives. We show that the robot is able to make the best choices it can given its drives and experiences using only local decisions and therefore displays planning behavior without the use of classical planning techniques.
Links To Paper
No links available
Bibtex format
author = { George Konidaris and Gillian Hayes },
title = {An Architecture for Behavior-Based Reinforcement Learning},
journal = {Adaptive Behavior},
publisher = {SAGE},
year = 2005,
volume = {13(1)},
pages = {5-32},
doi = {10.1177/105971230501300101},

Home : Publications : Report 

Please mail <> with any changes or corrections.
Unless explicitly stated otherwise, all material is copyright The University of Edinburgh