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Hierarchical Task 
Networks

Planning to perform tasks 
rather than to achieve goals

Hierarchical Task Networks
•Planning to perform tasks rather than to achieve goals
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HTN Planning

HTN planning:
• objective: perform a given set of tasks

input includes:
• set of operators
• set of methods: recipes for decomposing a complex 

task into more primitive subtasks

planning process: 
• decompose non-primitive tasks recursively until 

primitive tasks are reached

HTN Planning
•HTN planning:

•world state represented by set of atoms and actions 
correspond to deterministic state transitions
•objective: perform a given set of tasks

•previously: achieve some goals
•input includes:

•set of operators
•set of methods: recipes for decomposing a complex 
task into more primitive subtasks

•methods: at a higher level of abstraction
•primitive task: can be performed directly by an operator 
instance

•planning process: 
•decompose non-primitive tasks recursively until 
primitive tasks are reached

•HTN most widely used technique for real-world planning 
applications

•methods are a natural way to encode recipes (which should 
lead to solution plans only; reduces search significantly)
•methods reflect the way experts think about planning 
problems
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Overview

Simple Task Networks
HTN Planning
Extensions
State-Variable Representation

Overview
Simple Task Networks

now: representation and planning algorithms for STNs
•HTN Planning
•Extensions
•State-Variable Representation
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STN Planning

STN: Simple Task Network
what remains:
• terms, literals, operators, actions, state transition 

function, plans

what’s new:
• tasks to be performed
• methods describing ways in which tasks can be 

performed
• organized collections of tasks called task networks 

STN Planning
•STN: Simple Task Network

•STN: simplified version of the more general HTN case to be 
discussed later

•what remains:
•terms, literals, operators, actions, state transition 
function, plans

•what’s new:
•tasks to be performed
•methods describing ways in which tasks can be 
performed
•organized collections of tasks called task networks
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DWR Stack Moving Example

task: move stack of containers 
from pallet p1 to pallet p3 in a 
way the preserves the order

(informal) methods:
• move via intermediate: move stack to intermediate pile 

(reversing order) and then to final destination 
(reversing order again)

• move stack: repeatedly move the topmost container 
until the stack is empty

• move topmost: take followed by put action

p1c3

crane

p2 p3

c2
c1

DWR Stack Moving Example
•task: move stack of containers from pallet p1 to pallet p3 in 
a way the preserves the order

•preserve order: each container should be on same 
container it is on originally

•(informal) methods:
•methods: possible subtasks and how they can be 
accomplished
•move via intermediate: move stack to intermediate pile 
(reversing order) and then to final destination (reversing 
order again)
•move stack: repeatedly move the topmost container 
until the stack is empty
•move topmost: take followed by put action

•action: no further decomposition required
•note: abstract concept: stack
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Tasks
task symbols: TS = {t1,…,tn}• operator names ⊊ TS: primitive tasks
• non-primitive task symbols: TS - operator names

task: ti(r1,…,rk)• ti: task symbol (primitive or non-primitive)
• r1,…,rk: terms, objects manipulated by the task
• ground task: are ground

action a accomplishes ground primitive task 
ti(r1,…,rk) in state s iff
• name(a) = ti and 
• a is applicable in s

Tasks
•task symbols: TS = {t1,…,tn}

•used for giving unique names to tasks
•operator names ⊊ TS: primitive tasks
•non-primitive task symbols: TS - operator names

•task: ti(r1,…,rk)
•ti: task symbol (primitive or non-primitive)

•tasks: primitive iff task symbol is primitive
•r1,…,rk: terms, objects manipulated by the task
•ground task: are ground

•action a accomplishes ground primitive task ti(r1,…,rk) in 
state s iff

•action a = (name(a), precond(a), effects(a))
•name(a) = ti and 
•a is applicable in s

•applicability: s satisfies precond(a)
•note: unique operator names, hence primitive tasks can only be 
performed in one way – no search!
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Simple Task Networks

A simple task network w is an acyclic 
directed graph (U,E) in which 
• the node set U = {t1,…,tn} is a set of tasks and 
• the edges in E define a partial ordering of the 

tasks in U.

A task network w is ground/primitive if all 
tasks tu∈U are ground/primitive, 
otherwise it is unground/non-primitive.

Simple Task Networks
•A simple task network w is an acyclic directed graph (U,E) in 
which 

•the node set U = {t1,…,tn} is a set of tasks and 
•the edges in E define a partial ordering of the tasks in 
U.

•A task network w is ground/primitive if all tasks tu∈U are 
ground/primitive, otherwise it is unground/non-primitive.
•simple task network: shortcut “task network”
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Totally Ordered STNs

ordering: tu≺tv in w=(U,E) iff there is a path 
from tu to tv
STN w is totally ordered iff E defines a total 
order on U
• w is a sequence of tasks: 〈t1,…,tn〉

Let w = 〈t1,…,tn〉 be a totally ordered, ground, 
primitive STN. Then the plan π(w) is defined 
as:
• π(w) = 〈a1,…,an〉 where ai = ti; 1 ≤ i ≤ n

Totally Ordered STNs
•ordering: tu≺tv in w=(U,E) iff there is a path from tu to tv

•STN w is totally ordered iff E defines a total order on U
•w is a sequence of tasks: 〈t1,…,tn〉

•sequence is special case of acyclic directed graph
•t1: first task in U; t2 :second task in U; …; tn: last task in 
U

•Let w = 〈t1,…,tn〉 be a totally ordered, ground, primitive STN. 
Then the plan π(w) is defined as:

•π(w) = 〈a1,…,an〉 where ai = ti; 1 ≤ i ≤ n
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STNs: DWR Example
tasks:
• t1 = take(crane,loc,c1,c2,p1): primitive, ground
• t2 = take(crane,loc,c2,c3,p1): primitive, ground
• t3 = move-stack(p1,q): non-primitive, unground

task networks:
• w1 = ({t1,t2,t3}, {(t1,t2), (t1,t3)})• partially ordered, non-primitive, unground
• w2 = ({t1,t2}, {(t1,t2)})• totally ordered: w2 = 〈t1,t2〉, ground, primitive

• π(w2) = 
〈take(crane,loc,c1,c2,p1),take(crane,loc,c2,c3,p1)〉

STNs: DWR Example
•tasks:

•t1 = take(crane,loc,c1,c2,p1): primitive, ground
•carne “crane” at location “loc” takes container “c1” of 
container “c2” in pile “p1”

•t2 = take(crane,loc,c2,c3,p1): primitive, ground
•t3 = move-stack(p1,q): non-primitive, unground

•move the stack of containers on pallet “p2” to pallet “q”
(variable)

•task networks:
•w1 = ({t1,t2,t3}, {(t1,t2), (t1,t3)})

•partially ordered, non-primitive, unground
•w2 = ({t1,t2}, {(t1,t2)})

•totally ordered: w2 = 〈t1,t2〉, ground, primitive
•π(w2) = 
〈take(crane,loc,c1,c2,p1),take(crane,loc,c2,c3,p1)〉
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STN Methods
Let MS be a set of method symbols. An STN method is a 
4-tuple m=(name(m),task(m),precond(m),network(m)) 
where:
• name(m): 

• the name of the method
• syntactic expression of the form n(x1,…,xk)

• n∈MS: unique method symbol
• x1,…,xk: all the variable symbols that occur in m;

• task(m): a non-primitive task;
• precond(m): set of literals called the method’s preconditions;
• network(m): task network (U,E) containing the set of 

subtasks U of m.

STN Methods
•Let MS be a set of method symbols. An STN method is a 4-tuple 
m=(name(m),task(m),precond(m),network(m)) where:

•method symbols: disjoint from other types of symbols
•STN method: also just called method
•name(m): 

•the name of the method
•unique name: no two methods can have the same 
name; gives an easy way to unambiguously refer 
to a method instances

•syntactic expression of the form n(x1,…,xk)
•n∈MS: unique method symbol
•x1,…,xk: all the variable symbols that occur in m;

•no “local” variables in method definition (may 
be relaxed in other formalisms)

•task(m): a non-primitive task;
•what task can be performed with this method

•non-primitive: contains subtasks
•precond(m): set of literals called the method’s 
preconditions;

•like operator preconditions: what must be true in state 
s for m to be applicable

•no effects: not needed if problem is to 
refine/perform a task as opposed to achieving 
some effect
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STN Methods: DWR Example (1)

move topmost: take followed by put 
action
take-and-put(c,k,l,po,pd,xo,xd)
• task: move-topmost(po,pd)
• precond: top(c,po), on(c,xo), attached(po,l), 

belong(k,l), attached(pd,l), top(xd,pd)
• subtasks: 〈take(k,l,c,xo,po),put(k,l,c,xd,pd)〉

STN Methods: DWR Example (1)
•move topmost: take followed by put action

•simplest method from previous example
•take-and-put(c,k,l,po,pd,xo,xd)

•using crane k at location l, take container c from object xo
(container or pallet) in pile po and put it onto object xd in pile 
pd (o for origin, d for destination)
•task: move-topmost(po,pd)

•move topmost container from pile po to pile pd

•precond: 
•top(c,po), on(c,xo): pile must be empty with container 
c on top
•attached(po,l), belong(k,l), attached(pd,l): piles and 
crane must be at same location
•top(xd,pd): destination object must be top of its pile

•subtasks: 〈take(k,l,c,xo,po),put(take(k,l,c,xd,pd))〉
•simple macro operator combining two (primitive) 
operators (sequentially)
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STN Methods: DWR Example (2)
move stack: repeatedly move the topmost 
container until the stack is empty
recursive-move(po,pd,c,xo)
• task: move-stack(po,pd)
• precond: top(c,po), on(c,xo)
• subtasks: 〈move-topmost(po,pd), move-stack(po,pd)〉

no-move(po,pd)
• task: move-stack(po,pd)
• precond: top(pallet,po)
• subtasks: 〈〉

STN Methods: DWR Example (2)
•move stack: repeatedly move the topmost container until the stack is 
empty
•recursive-move(po,pd,c,xo)

•move container c which must be on object xo in pile po to the top of 
pile pd

•task: move-stack(po,pd)
•move the remainder of the satck from po to pd: more abstract 
than method

•precond: top(c,po), on(c,xo)
•po must be empty; c is the top container
•method is not applicable to empty piles!

•subtasks: 〈move-topmost(po,pd), move-stack(po,pd)〉
•recursive decomposition: move top container and then 
recursive invocation of method through task

•no-move(po,pd)
•performs the task by doing nothing
•task: move-stack(po,pd)

•as above
•precond: top(pallet,po)

•the pile must be empty (recursion ends here)
•subtasks: 〈〉

•do nothing does nothing
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STN Methods: DWR Example (3)

move via intermediate: move stack to 
intermediate pile (reversing order) and 
then to final destination (reversing order 
again)
move-stack-twice(po,pi,pd)
• task: move-ordered-stack(po,pd)
• precond: -
• subtasks: 

〈move-stack(po,pi),move-stack(pi,pd)〉

STN Methods: DWR Example (3)
•move via intermediate: move stack to intermediate pallet 
(reversing order) and then to final destination (reversing 
order again)
•move-stack-twice(po,pi,pd)

•move the stack of containers in pile po first to intermediate 
pile pi then to pd, thus preserving the order
•task: move-ordered-stack(po,pd)

•move the stack from po to pd in an order-preserving 
way

•precond: -
•none; should mention that piles must be at same 
location and different

•subtasks: 〈move-stack(po,pi),move-stack(pi,pd)〉
•the two stack moves
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Applicability and Relevance

A method instance m is applicable in a state s if 
• precond+(m) ⊆ s and 
• precond-(m) ∩ s = { }.

A method instance m is relevant for a task t if
• there is a substitution σ such that σ(t) = task(m).

The decomposition of a task t by a relevant 
method m under σ is
• δ(t,m,σ) = σ(network(m)) or
• δ(t,m,σ) = σ(〈subtasks(m)〉) if m is totally ordered.

Applicability and Relevance
•A method instance m is applicable in a state s if 

•precond+(m) ⊆ s and 
•precond-(m) ∩ s = { }.

•A method instance m is relevant for a task t if
•there is a substitution σ such that σ(t) = task(m).

•The decomposition of a task t by a relevant method m under 
σ is

•δ(t,m,σ) = σ(network(m)) or
•δ(t,m,σ) = σ(〈subtasks(m)〉) if m is totally ordered.
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Method Applicability and 
Relevance: DWR Example

task t = move-stack(p1,q)
state s (as shown)

method instance mi =
recursive-move(p1,p2,c1,c2)
• mi is applicable in s
• mi is relevant for t under σ = {q←p2}

p1c3

crane

p2 p3

c2
c1

Method Applicability and Relevance: DWR Example
•task t = move-stack(p1,q)
•state s (as shown)
•method instance mi = recursive-move(p1,p2,c1,c2)

•mi is applicable in s
•mi is relevant for t under σ = {q←p2}
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Method Decomposition: DWR 
Example

δ(t,mi,σ) = 
〈move-topmost(p1,p2), move-stack(p1,p2)〉

move-stack(p1,q)

move-stack(p1,p2)move-topmost(p1,p2)

{q←p2}: recursive-move(p1,p2,c1,c2)

Method Decomposition: DWR Example
•δ(t,mi,σ) = 〈move-topmost(p1,p2), move-stack(p1,p2)〉
•[figure]
•graphical representation (called a decomposition tree): 

•view as AND/OR-graph: AND link – both subtasks need to 
be performed to perform super-task
•link is labelled with substitution and method instance used
•arrow under label indicates order in which subtasks need to 
be performed
•often leave out substitution (derivable) and sometimes 
method parameters (to save space)
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Decomposition of Tasks in STNs

Let 
• w = (U,E) be a STN and 
• t∈U be a task with no predecessors in w and
• m a method that is relevant for t under some 

substitution σ with network(m) = (Um,Em).
The decomposition of t in w by m under σ is 
the STN δ(w,u,m,σ) where:
• t is replaced in U by σ(Um) and
• edges in E involving t are replaced by edges to 

appropriate nodes in σ(Um).

Decomposition of Tasks in STNs
•idea: applying a method to a task in a network results in another 
network
•Let 

•w = (U,E) be a STN and 
•t∈U be a task with no predecessors in w and
•m a method that is relevant for t under some 
substitution σ with network(m) = (Um,Em).

•The decomposition of t in w by m under σ is the STN 
δ(w,u,m,σ) where:

•t is replaced in U by σ(Um) and
•replacement with copy (method maybe used more than 
once)

•edges in E involving t are replaced by edges to 
appropriate nodes in σ(Um).

•every node in σ(Um) should come before nodes that 
came after t in E
•σ(Em) needs to be added to E to preserve internal 
method ordering
•ordering constraints must ensure that precond(m) 
remains true even after subsequent decompositions
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STN Planning Domains

An STN planning domain is a pair 
D=(O,M) where:
• O is a set of STRIPS planning operators and
• M is a set of STN methods.

D is a total-order STN planning domain if 
every m∈M is totally ordered.

STN Planning Domains
•An STN planning domain is a pair D=(O,M) where:

•O is a set of STRIPS planning operators and
•M is a set of STN methods.

•D is a total-order STN planning domain if every m∈M is 
totally ordered.
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STN Planning Problems

An STN planning problem is a 4-tuple 
P=(si,wi,O,M) where:
• si is the initial state (a set of ground atoms)
• wi is a task network called the initial task network and
• D=(O,M) is an STN planning domain.

P is a total-order STN planning domain if wi
and D are both totally ordered.

STN Planning Problems
•An STN planning problem is a 4-tuple P=(si,wi,O,M) where:

•si is the initial state (a set of ground atoms)
•wi is a task network called the initial task network and
•D=(O,M) is an STN planning domain.

•P is a total-order STN planning domain if wi and D are both 
totally ordered.
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STN Solutions
A plan π = 〈a1,…,an〉 is a solution for an STN planning 
problem P=(si,wi,O,M) if:

• wi is empty and π is empty;
• or:

• there is a primitive task t∈wi that has no predecessors in wi and
• a1=t is applicable in si and
• π’ = 〈a2,…,an〉 is a solution for P’=(γ(si,a1), wi-{t}, O, M)

• or:
• there is a non-primitive task t∈wi that has no predecessors in 

wi and
• m∈M is relevant for t, i.e. σ(t) = task(m) and applicable in si

and
• π is a solution for P’=(si, δ(wi,t,m,σ), O, M).

STN Solutions
•A plan π = 〈a1,…,an〉 is a solution for an STN planning problem 
P=(si,wi,O,M) if:

•if π is a solution for P, then we say that π accomplishes P
•intuition: there is a way to decompose wi into π such that:

•π is executable in si and
•each decomposition is applicable in an appropriate 
state of the world
•wi is empty and π is empty;

•or:
•there is a primitive task t∈wi that has no predecessors 
in wi and
•a1=t is applicable in si and
•π’ = 〈a2,…,an〉 is a solution for P’=(γ(si,a1), wi-{t}, O, M)

•or:
•there is a non-primitive task t∈wi that has no 
predecessors in wi and
•m∈M is relevant for t, i.e. σ(t) = task(m) and applicable 
in si and
•π is a solution for P’=(si, δ(wi,t,m,σ), O, M).

•2nd and 3rd case: recursive definition
•if wi is not totally ordered more than one node may 
have no predecessors and both cases may apply
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Decomposition Tree: DWR 
Example

move-stack(p1,q)

move-stack(p1,p2)move-topmost(p1,p2)

recursive-move(p1,p2,c1,c2)

take(crane,loc,c1,c2,p1) put(crane,loc,c1,pallet,p2) move-stack(p1,p2)move-topmost(p1,p2)

take(crane,loc,c2,c3,p1) put(crane,loc,c2,c1,p2) move-stack(p1,p2)move-topmost(p1,p2)

take(crane,loc,c3,pallet,p1) put(crane,loc,c3,c2,p2) 〈〉

recursive-move(p1,p2,c2,c3)take-and-put(…)

no-move(p1,p2)

recursive-move(p1,p2,c3,pallet)take-and-put(…)

take-and-put(…)

Decomposition Tree: DWR Example
•choose method: recursive-move(p1,p2,c1,c2) – binds variable q
•decompose into two sub-tasks
•choose method for first subtask: take-and-put: c1 from c2 onto pallet
•decompose into subtasks – primitive subtasks (grey) cannot be 
decomposed/correspond to actions
•choose method for second sub-task: recursive-move (recursive part)
•decompose (recursive)
•choose method and decompose (into primitive tasks): take-and-put: c2 
from c3 onto c1
•choose method and decompose (recursive)
•choose method and decompose: take-and-put: c3 from pallet onto c2
•choose method (no-move) and decompose (empty plan)

•note: 
•(grey) leaf nodes of decomposition tree (primitive tasks) are actions 
of solution plan
•(blue) inner nodes represent non-primitive task; decomposition 
results in sub-tree rooted at task according to decomposition function 
δ
•no search required in this example
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Ground-TFD: Pseudo Code
function Ground-TFD(s,〈t1,…,tk〉,O,M)

if k=0 return 〈〉
if t1.isPrimitive() then

actions = {(a,σ) | a=σ(t1) and a applicable in s}
if actions.isEmpty() then return failure
(a,σ) = actions.chooseOne()
plan Ground-TFD(γ(s,a),σ(〈t2,…,tk〉),O,M)
if plan = failure then return failure
else return 〈a〉 ∙ plan

else
methods = {(m,σ) | m is relevant for σ(t1) and m is applicable in s}
if methods.isEmpty() then return failure
(m,σ) = methods.chooseOne()
plan subtasks(m) ∙ σ(〈t2,…,tk〉)
return Ground-TFD(s,plan,O,M)

Ground-TFD: Pseudo Code
•TFD = Total-order Forward Decomposition; direct implementation 
of definition of STN solution
•function Ground-TFD(s,〈t1,…,tk〉,O,M)
•if k=0 return 〈〉
•if t1.isPrimitive() then
•actions = {(a,σ) | a=σ(t1) and a applicable in s}
•if actions.isEmpty() then return failure
•(a,σ) = actions.chooseOne()
•plan Ground-TFD(γ(s,a),σ(〈t2,…,tk〉),O,M)
•if plan = failure then return failure
•else return 〈a〉 ∙ plan
•else t1 is non-primitive
•methods = {(m,σ) | m is relevant for σ(t1) and m is applicable 
in s}
•if methods.isEmpty() then return failure
•(m,σ) = methods.chooseOne()
•plan subtasks(m) ∙ σ(〈t2,…,tk〉)
•return Ground-TFD(s,plan,O,M)
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TFD vs. Forward/Backward 
Search

choosing actions:
• TFD considers only applicable actions like forward 

search
• TFD considers only relevant actions like backward 

search
plan generation:
• TFD generates actions execution order; current world 

state always known
lifting:
• Ground-TFD can be generalized to Lifted-TFD 

resulting in same advantages as lifted backward 
search

TFD vs. Forward/Backward Search
•choosing actions:

•TFD considers only applicable actions like forward 
search
•TFD considers only relevant actions like backward 
search
•TFD combines advantages of both search directions –
better efficiency

•plan generation:
•TFD generates actions execution order; current world 
state always known

•e.g. good for domain-specific heuristics
•lifting:

•Ground-TFD can be generalized to Lifted-TFD resulting 
in same advantages as lifted backward search
•avoids generating unnecessarily many actions (smaller 
branching factor)
•works for initial task list that is not ground
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Ground-PFD: Pseudo Code
function Ground-PFD(s,w,O,M)

if w.U={} return 〈〉
task {t∈U | t has no predecessors in w.E}.chooseOne()
if task.isPrimitive() then

actions = {(a,σ) | a=σ(t1) and a applicable in s}
if actions.isEmpty() then return failure
(a,σ) = actions.chooseOne()
plan Ground-PFD(γ(s,a),σ(w-{task}),O,M)
if plan = failure then return failure
else return 〈a〉 ∙ plan

else
methods = {(m,σ) | m is relevant for σ(t1) and m is applicable in s}
if methods.isEmpty() then return failure
(m,σ) = methods.chooseOne()
return Ground-PFD(s, δ(w,task,m,σ),O,M)

Ground-PFD: Pseudo Code
•PFD = Partial-order Forward Decomposition; direct 
implementation of definition of STN solution
•function Ground-PFD(s,w,O,M)
•if w.U={} return 〈〉
•task {t∈U | t has no predecessors in w.E}.chooseOne()
•if task.isPrimitive() then
•actions = {(a,σ) | a=σ(t1) and a applicable in s}
•if actions.isEmpty() then return failure
•(a,σ) = actions.chooseOne()
•plan Ground-PFD(γ(s,a),σ(w-{task}),O,M)
•if plan = failure then return failure
•else return 〈a〉 ∙ plan
•else
•methods = {(m,σ) | m is relevant for σ(t1) and m is applicable in s}
•if methods.isEmpty() then return failure
•(m,σ) = methods.chooseOne()
•return Ground-PFD(s, δ(w,task,m,σ),O,M)
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Overview

Simple Task Networks
HTN Planning
Extensions
State-Variable Representation

Overview
Simple Task Networks

just done: representation and planning algorithms for STNs
•HTN Planning

•now: generalizing the formalism and algorithm
•Extensions
•State-Variable Representation
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Preconditions in STN Planning

STN planning constraints:
• ordering constraints: maintained in network
• preconditions: 

• enforced by planning procedure
• must know state to test for applicability
• must perform forward search

HTN Planning
• additional bookkeeping maintains general 

constraints explicitly

Preconditions in STN Planning
•STN planning constraints:

•ordering constraints: maintained in network
•preconditions: 

•enforced by planning procedure
•must know state to test for applicability
•must perform forward search

•HTN Planning
•additional bookkeeping maintains general constraints 
explicitly



28

Hierarchical Task Networks 28

First and Last Network Nodes

Let 
• π = 〈a1,…,an〉 be a solution for w, 
• U’⊆U be a set of tasks in w, and 
• A(U’) the subset of actions in π such that each 

ai∈A(U’) is a descendant of some t∈U’ in the 
decomposition tree.

Then we define:
• first(U’,π) = the action ai∈A(U’) that occurs first in π; 

and
• last(U’,π) = the action ai∈A(U’) that occurs last in π.

First and Last Network Nodes
•for defining the constraints in an HTN network
•Let 

•π = 〈a1,…,an〉 be a solution for w, 
•HTN solution will be defined later

•U’⊆U be a set of tasks in w, and 
•A(U’) the subset of actions in π such that each ai∈A(U’) 
is a descendant of some t∈U’ in the decomposition tree.

•Then we define:
•first(U’,π) = the action ai∈A(U’) that occurs first in π; 
and
•last(U’,π) = the action ai∈A(U’) that occurs last in π.

•network is partially ordered; solution is totally ordered
•for a given set of subtasks, one action decomposing U’
must occur first/last in the solution plan
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Hierarchical Task Networks

A (hierarchical) task network is a pair w=(U,C), 
where:
• U is a set of tasks and 
• C is a set of constraints of the following types:

• t1≺t2: precedence constraint between tasks
satisfied if in every solution π: last({t},π) ≺ first({t},π);

• before(U’,l): satisfied if in every solution π: literal l holds 
in the state just before first(U’,π);

• after(U’,l): satisfied if in every solution π: literal l holds in 
the state just after last(U’,π);

• between(U’,U’’,l): satisfied if in every solution π: literal l
holds in every state after last(U’,π) and before first(U’’,π).

Hierarchical Task Networks
•A (hierarchical) task network is a pair w=(U,C), where:

•U is a set of tasks and 
•C is a set of constraints of the following types:

•t1≺t2: precedence constraint between tasks satisfied if 
in every solution π: last({t},π) ≺ first({t},π);

•corresponds to edge in STN 
•before(U’,l): satisfied if in every solution π: literal l
holds in the state just before first(U’,π);
•after(U’,l): satisfied if in every solution π: literal l holds 
in the state just after last(U’,π);
•between(U’,U’’,l): satisfied if in every solution π: literal 
l holds in every state after last(U’,π) and before 
first(U’’,π).
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HTN Methods
Let MS be a set of method symbols. An HTN 
method is a 4-tuple 
m=(name(m),task(m),subtasks(m),constr(m)) 
where:
• name(m): 

• the name of the method
• syntactic expression of the form n(x1,…,xk)

• n∈MS: unique method symbol
• x1,…,xk: all the variable symbols that occur in m;

• task(m): a non-primitive task;
• (subtasks(m),constr(m)): a task network.

HTN Methods
•extension of the definition of an STN method
•Let MS be a set of method symbols. An HTN method is a 4-tuple 
m=(name(m),task(m),subtasks(m),constr(m)) where:

•name(m): 
•the name of the method
•syntactic expression of the form n(x1,…,xk)

•n∈MS: unique method symbol
•x1,…,xk: all the variable symbols that occur in 
m;

•task(m): a non-primitive task;
•(subtasks(m),constr(m)): a task network.
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HTN Methods: DWR Example (1)

move topmost: take followed by put 
action
take-and-put(c,k,l,po,pd,xo,xd)
• task: move-topmost(po,pd)
• network: 

• subtasks: {t1=take(k,l,c,xo,po), t2=put(k,l,c,xd,pd)}
• constraints: {t1≺t2, before({t1}, top(c,po)), 

before({t1}, on(c,xo)), before({t1}, attached(po,l)), 
before({t1}, belong(k,l)), before({t2}, attached(pd,l)), 
before({t2}, top(xd,pd))}

HTN Methods: DWR Example (1)
•move topmost: take followed by put action
•take-and-put(c,k,l,po,pd,xo,xd)

•task: move-topmost(po,pd)
•network: 

•subtasks: {t1=take(k,l,c,xo,po), t2=put(k,l,c,xd,pd)}
•constraints: {t1≺t2, before({t1}, top(c,po)), 
before({t1}, on(c,xo)), before({t1}, attached(po,l)), 
before({t1}, belong(k,l)), before({t2}, attached(pd,l)), 
before({t2}, top(xd,pd))}
•note: before-constraints refer to both tasks; more 
precise than STN representation of preconditions
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HTN Methods: DWR Example (2)
move stack: repeatedly move the topmost container 
until the stack is empty
recursive-move(po,pd,c,xo)• task: move-stack(po,pd)• network: 

• subtasks: {t1=move-topmost(po,pd), t2=move-stack(po,pd)}• constraints: {t1≺t2, before({t1}, top(c,po)), before({t1}, on(c,xo))}
move-one(po,pd,c)
• task: move-stack(po,pd)• network: 

• subtasks: {t1=move-topmost(po,pd)}• constraints: {before({t1}, top(c,po)), before({t1}, on(c,pallet))}

HTN Methods: DWR Example (2)
•move stack: repeatedly move the topmost container until the stack is 
empty
•recursive-move(po,pd,c,xo)

•task: move-stack(po,pd)
•network: 

•subtasks: {t1=move-topmost(po,pd), t2=move-
stack(po,pd)}
•constraints: {t1≺t2, before({t1}, top(c,po)), before({t1}, 
on(c,xo))}

•move-one(po,pd,c)
•task: move-stack(po,pd)
•network: 

•subtasks: {t1=move-topmost(po,pd)}
•constraints: {before({t1}, top(c,po)), before({t1}, 
on(c,pallet))}
•note: problem with no-move: cannot add before-
constraint when there are no tasks

•move-stack-twice(po,pi,pd) trivial; not shown again
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HTN Decomposition
Let w=(U,C) be a task network, t∈U a task, and m a 
method such that σ(task(m))=t. Then the decomposition 
of t in w using m under σ is defined as:

δ(w,t,m,σ) = ((U-{t})∪σ(subtasks(m)), C’∪σ(constr(m)))

where C’ is modified from C as follows:
• for every precedence constraint in C that contains t, replace 

it with precedence constraints containing σ(subtasks(m)) 
instead of t; and

• for every before-, after-, or between constraint over tasks U’
containing t, replace U’ with (U’-{t})∪σ(subtasks(m)).

HTN Decomposition
•Let w=(U,C) be a task network, t∈U a task, and m a method 
such that σ(task(m))=t. Then the decomposition of t in w
using m under σ is defined as:
δ(w,t,m,σ) = ((U-{t})∪σ(subtasks(m)), C’∪σ(constr(m)))

•new, additional constraints may introduce threats that need 
to be resolved
where C’ is modified from C as follows:
•for every precedence constraint in C that contains t, 
replace it with precedence constraints containing 
σ(subtasks(m)) instead of t; and
•example: let subtasks(m)={t1,t2} and t≺t’∈C

•then replace t≺t’ with t1≺t’ and t2≺t’
•cannot introduce inconsistencies (circles) since 
subtasks are new nodes

•for every before-, after-, or between constraint over 
tasks U’ containing t, replace U’ with (U’-
{t})∪σ(subtasks(m)).
•example (other constraints): let subtasks(m)={t1,t2} and 
before({t,t’ },l )∈C

•then replace before({t,t’ },l ) with before({t1,t2,t’ },l )
•cannot introduce inconsistencies either
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HTN Decomposition: Example
network: w = ({t1= move-stack(p1,q)}, {})

δ(w, t1, recursive-move(po,pd,c,xo), {po←p1,pd←q}) = w’ = 
• ({t2=move-topmost(p1,q), t3=move-stack(p1,q)}, 
• {t2≺t3, before({t2}, top(c,p1)), before({t2}, on(c,xo))})

δ(w’, t2, take-and-put(c,k,l,po,pd,xo,xd), {po←p1,pd←q}) =
• ({t3=move-stack(p1,q), t4=take(k,l,c,xo,p1), t5=put(k,l,c,xd,q)},
• {t4≺t3, t5≺t3, before({t4,t5}, top(c,p1)), before({t4,t5}, on(c,xo))} ∪

{t4≺t5, before({t4}, top(c,p1)), before({t4}, on(c,xo)), before({t4}, 
attached(p1,l)), before({t4}, belong(k,l)), before({t5}, 
attached(q,l)), before({t5}, top(xd,q))})

HTN Decomposition: Example
•network: w = ({t1= move-stack(p1,q)}, {})

•initial, single task with no constraints
•δ(w, t1, recursive-move(po,pd,c,xo), {po←p1,pd←q}) = w’ = 

•({t2=move-topmost(p1,q), t3=move-stack(p1,q)}, 
•2 instantiated subtasks from method

•{t2≺t3, before({t2}, top(c,p1)), before({t2}, on(c,xo))})
•instantiated constraints from method

•δ(w’, t2, take-and-put(c,k,l,po,pd,xo,xd), {po←p1,pd←q}) =
•({t3=move-stack(p1,q), t4=take(k,l,c,xo,p1), 
t5=put(k,l,c,xd,q)},

•t3: from input network w’; t4 and t5 from method
•{t4≺t3, t5≺t3, 

•ordering did involve t2 – replace with two constraints 
for new subtasks t4 and t5

•before({t4,t5}, top(c,p1)), before({t4,t5}, on(c,xo))} ∪
•replaced {t2} with {t4,t5}

•{t4≺t5, before({t4}, top(c,p1)), before({t4}, on(c,xo)), 
before({t4}, attached(p1,l)), before({t4}, belong(k,l)), 
before({t5}, attached(q,l)), before({t5}, top(xd,q))})

•instantiated constraints from new method
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HTN Planning Domains and 
Problems

An HTN planning domain is a pair D=(O,M) 
where:
• O is a set of STRIPS planning operators and
• M is a set of HTN methods.

An HTN planning problem is a 4-tuple 
P=(si,wi,O,M) where:
• si is the initial state (a set of ground atoms)
• wi is a task network called the initial task network and
• D=(O,M) is an HTN planning domain.

HTN Planning Domains and Problems
•An HTN planning domain is a pair D=(O,M) where:

•O is a set of STRIPS planning operators and
•M is a set of HTN methods.

•An HTN planning problem is a 4-tuple P=(si,wi,O,M) where:
•si is the initial state (a set of ground atoms)
•wi is a task network called the initial task network and
•D=(O,M) is an HTN planning domain.
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Solutions for Primitive HTNs
Let (U,C) be a primitive HTN. A plan π = 〈a1,…,an〉 is a 
solution for P=(si,(U,C),O,M) if there is a ground instance 
(σ(U),σ(C)) of (U,C) and a total ordering 〈t1,…,tn〉 of tasks in 
σ(U) such that:
• for i=1…n: name(ai) = ti; • π is executable in si, i.e. γ(si,π) is defined;
• the ordering of 〈t1,…,tn〉 respects the ordering constraints in 
σ(C);

• for every constraint before(U’,l) in σ(C) where tk=first(U’,π): l
must hold in γ(si, 〈a1,…,ak-1〉); • for every constraint after(U’,l) in σ(C) where tk=last(U’,π): l must 
hold in γ(si, 〈a1,…,ak〉);• for every constraint between(U’,U’’,l) in σ(C) where tk=first(U’,π) 
and tm=last(U’’,π): l must hold in every state γ(si, 〈a1,…,aj〉), 
j∈{k…m-1}.

Solutions for Primitive HTNs
•Let (U,C) be a primitive HTN. A plan π = 〈a1,…,an〉 is a solution for 
P=(si,(U,C),O,M) if there is a ground instance (σ(U),σ(C)) of (U,C) and a 
total ordering 〈t1,…,tn〉 of tasks in σ(U) such that:

•for i=1…n: name(ai) = ti; 
•π is executable in si, i.e. γ(si,π) is defined;
•the ordering of 〈t1,…,tn〉 respects the ordering constraints in 
σ(C);
•for every constraint before(U’,l) in σ(C) where tk=first(U’,π): 
l must hold in γ(si, 〈a1,…,ak-1〉); 
•for every constraint after(U’,l) in σ(C) where tk=last(U’,π): l
must hold in γ(si, 〈a1,…,ak〉);
•for every constraint between(U’,U’’,l) in σ(C) where 
tk=first(U’,π) and tm=last(U’’,π): l must hold in every state 
γ(si, 〈a1,…,aj〉), j∈{k…m-1}.
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Solutions for Non-Primitive 
HTNs

Let w = (U,C) be a non-primitive HTN. A 
plan π = 〈a1,…,an〉 is a solution for 
P=(si,w,O,M) if there is a sequence of 
task decompositions that can be applied 
to w such that:
• the result of the decompositions is a primitive 

HTN w’; and
• π is a solution for P’=(si,w’,O,M).

Solutions for Non-Primitive HTNs
•Let w = (U,C) be a non-primitive HTN. A plan π = 〈a1,…,an〉 is 
a solution for P=(si,w,O,M) if there is a sequence of task 
decompositions that can be applied to w such that:

•the result of the decompositions is a primitive HTN w’; 
and
•π is a solution for P’=(si,w’,O,M).
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Abstract-HTN: Pseudo Code

function Abstract-HTN(s,U,C,O,M)
if (U,C).isInconsistent() then return failure
if U.isPrimitive() then

return extractSolution(s,U,C,O)
else

return decomposeTask(s,U,C,O,M)

Abstract-HTN: Pseudo Code
•general schema for a function that implements HTN planning
•function Abstract-HTN(s,U,C,O,M)
•if (U,C).isInconsistent() then return failure

•e.g. test for inconsistency of C, or apply other, domain-specific tests
•if U.isPrimitive() then

•no further decompositions of tasks possible
•return extractSolution(s,U,C,O)

•compute a total-order, grounded plan; may fail
•else

•network still contains decomposable tasks
•return decomposeTask(s,U,C,O,M)

•will recursively call Abstract-HTN function
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extractSolution: Pseudo Code

function extractSolution(s,U,C,O)
〈t1,…,tn〉 U.chooseSequence(C)
〈a1,…,an〉

〈t1,…,tn〉.chooseGrounding(s,C,O)
if 〈a1,…,an〉.satisfies(C) then

return 〈a1,…,an〉
return failure

extractSolution: Pseudo Code
•function extractSolution(s,U,C,O)
•〈t1,…,tn〉 U.chooseSequence(C)

•non-deterministically choose a serialization of the tasks in U that 
respects the ordering constraints in C

•〈a1,…,an〉 〈t1,…,tn〉.chooseGrounding(s,C,O)
•non-deterministically choose a grounding of the variables in t1,…,tn

•use s and C to ensure constraints hold, and O for type 
information if present

•if 〈a1,…,an〉.satisfies(C) then
•this test can be performed during the grounding

•return 〈a1,…,an〉
•plan is a solution, return it

•return failure
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decomposeTask: Pseudo Code

function decomposeTask(s,U,C,O,M)
t U.nonPrimitives().selectOne()
methods {(m,σ) | m∈M and σ(task(m))= σ(t)}
if methods.isEmpty() then return failure
(m,σ) methods.chooseOne()
(U’,C’) δ((U,C),t,m,σ)
(U’,C’) (U’,C’).applyCritic()
return Abstract-HTN(s,U’,C’,O,M)

decomposeTask: Pseudo Code
•function decomposeTask(s,U,C,O,M)
•t U.nonPrimitives().selectOne()

•deterministically select a non-primitive task-node from the 
network

•no backtracking required, all tasks must be 
decomposed eventually; selection important for 
efficiency

•methods {(m,σ) | m∈M and σ(task(m))= σ(t)}
•substitution should be mgu for least commitment planner 
(generates smaller search space)

•if methods.isEmpty() then return failure
•(m,σ) methods.chooseOne()

•non-deterministically choose a method that can be applied 
to decompose the task

•(U’,C’) δ((U,C),t,m,σ)
•compute the decomposition

•(U’,C’) (U’,C’).applyCritic()
•optional; may make arbitrary modifications, e.g. application-
specific computations
•soundness and completeness depends on this function

•return Abstract-HTN(s,U’,C’,O,M)
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HTN vs. STRIPS Planning

Since
• HTN is generalization of STN Planning, and
• STN problems can encode undecidable problems, but
• STRIPS cannot encode such problems:

STN/HTN formalism is more expressive
non-recursive STN can be translated into 
equivalent STRIPS problem
• but exponentially larger in worst case

“regular” STN is equivalent to STRIPS

HTN vs. STRIPS Planning
•Since

•HTN is generalization of STN Planning, and
•STN problems can encode undecidable problems, but
•STRIPS cannot encode such problems:

•STN/HTN formalism is more expressive
•non-recursive STN can be translated into equivalent STRIPS 
problem

•but exponentially larger in worst case
•“regular” STN is equivalent to STRIPS

•non-recursive
•at most one non-primitive subtask per method
•non-primitive sub-task must be last in sequence
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Overview

Simple Task Networks
HTN Planning
Extensions
State-Variable Representation

Overview
Simple Task Networks

•HTN Planning
•just done: generalizing the formalism and algorithm

•Extensions
•now: approaches to extending the formalism and algorithm

•State-Variable Representation
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Functions in Terms
allow function terms in world state and method 
constraints
ground versions of all planning algorithms may 
fail
• potentially infinite number of ground instances of a 

given term 
lifted algorithms can be applied with most 
general unifier
• least commitment approach instantiates only as far as 

necessary
• plan-existence may not be decidable

Functions in Terms
•allow function terms in world state and method constraints
•ground versions of all planning algorithms may fail

•potentially infinite number of ground instances of a 
given term 

•lifted algorithms can be applied with most general unifier
•least commitment approach instantiates only as far as 
necessary
•plan-existence may not be decidable
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Axiomatic Inference

use theorem prover to infer derived 
knowledge within world states
• undecidability of first-order logic in general

idea: use restricted (decidable) subset of 
first-order logic: Horn clauses
• only positive preconditions can be derived
• precondition p is satisfied in state s iff p can 

be proved in s

Axiomatic Inference
•use theorem prover to infer derived knowledge within world 
states

•undecidability of first-order logic in general
•idea: use restricted (decidable) subset of first-order logic: 
Horn clauses

•only positive preconditions can be derived
•precondition p is satisfied in state s iff p can be proved 
in s

•semantics of negative preconditions: closed world assumption?
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Attached Procedures

associate predicates with procedures
modify planning algorithm
• evaluate preconditions by 

• calling the procedure attached to the predicate 
symbol if there is such a procedure

• test against world state (set-relation, theorem 
prover) otherwise

soundness and completeness: depends 
on procedures

Attached Procedures
•associate predicates with procedures
•modify planning algorithm

•evaluate preconditions by 
•calling the procedure attached to the predicate 
symbol if there is such a procedure
•test against world state (set-relation, theorem 
prover) otherwise

•applications: 
•perform numeric computations
•query external data sources

•soundness and completeness: depends on procedures
•attached procedures to function symbols: critics
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High-Level Effects

allow user to declare effects for non-
primitive methods
aim:
• establish preconditions
• prune partial plans if high-level effects 

threaten preconditions
increases efficiency
problem: semantics

High-Level Effects
•allow user to declare effects for non-primitive methods
•aim:

•establish preconditions
•prune partial plans if high-level effects threaten 
preconditions

•increases efficiency
•problem: semantics

•can be defined in different ways
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Other Extensions

other constraints
• time constraints
• resource constraints

extended goals
• states to be avoided
• required intermediate states
• limited plan length
• visit states multiple times

Other Extensions
•other constraints

•time constraints
•resource constraints

•extended goals
•states to be avoided
•required intermediate states
•limited plan length
•visit states multiple times
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Overview

Simple Task Networks
HTN Planning
Extensions
State-Variable Representation

Overview
Simple Task Networks

•HTN Planning
•Extensions

•just done: approaches to extending the formalism and 
algorithm

•State-Variable Representation
•now: different style of representation (used in O-Plan/I-Plan)
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State Variables

some relations are functions
• example: at(r1,loc1): relates robot r1 to location loc1 in 

some state
• truth value changes from state to state
• will only be true for exactly one location l in each state

idea: represent such relations using state-
variable functions mapping states into objects
• example: functional representation: 

rloc:robots×S→locations

State Variables
•some relations are functions

•example: at(r1,loc1): relates robot r1 to location loc1 in 
some state

•truth value changes from state to state
•will only be true for exactly one location l in each 
state

•STRIPS state containing at(r1,loc1) and 
at(r1,loc2) usually inconsistent

•idea: represent such relations using state-variable functions
mapping states into objects

•advantage: reduces possibilities for inconsistent states, 
smaller state space
•example: functional representation: 
rloc:robots×S→locations

•in general: maps objects and state into object
•rloc is state-variable symbol that denotes state-variable 
function
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States in the State-Variable 
Representation

Let X be a set of state-variable functions. A 
k-ary state variable is an expression of the 
form x(v1,…vk) where: 
• x∈X is a state-variable function and 
• vi is either an object constant or an object 

variable.
A state-variable state description is a set of 
expressions of the form xs=c where:
• xs is a ground state variable x(v1,…vk) and 
• c is an object constant.

States in the State-Variable Representation
•Let X be a set of state-variable functions. A k-ary state 
variable is an expression of the form x(v1,…vk) where: 

•x∈X is a state-variable function and 
•vi is either an object constant or an object variable.

•object variables as opposed to state variables
•ground if all vi are object constants
•additionally: vi may be typed

•state variable is a characteristic attribute of a state
•A state-variable state description is a set of expressions 
of the form xs=c where:

•xs is a ground state variable x(v1,…vk) and 
•c is an object constant.
•as for ground atoms in STRIPS states, state is implicit
•state description will usually give all values of ground state 
variables
•values of state variables are not independent
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DWR Example: State-Variable 
State Descriptions

simplified: no cranes, no piles
state-variable functions:
• rloc: robots×S → locations
• rolad: robots×S→containers ∪ {nil}
• cpos: containers×S → locations ∪ robots

sample state-variable state descriptions:
• {rloc(r1)=loc1, rload(r1)=nil, cpos(c1)=loc1, 

cpos(c2)=loc2, cpos(c3)=loc2} 
• {rloc(r1)=loc1, rload(r1)=c1, cpos(c1)=r1, 

cpos(c2)=loc2, cpos(c3)=loc2}

DWR Example: State-Variable State Descriptions
•simplified: no cranes, no piles

•robots can load and unload containers autonomously
•state-variable functions:

•rloc: robots×S → locations
•location of a robot in a state

•rolad: robots×S→containers ∪ {nil}
•what a robot has loaded in a state; nil for nothing 
loaded

•cpos: containers×S → locations ∪ robots
•where a container is in a state; at a location or on 
some robot

•sample state-variable state descriptions:
•{rloc(r1)=loc1, rload(r1)=nil, cpos(c1)=loc1, cpos(c2)=loc2, 
cpos(c3)=loc2} 
•{rloc(r1)=loc1, rload(r1)=c1, cpos(c1)=r1, cpos(c2)=loc2, 
cpos(c3)=loc2}
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Operators in the State-Variable 
Representation 

A state-variable planning operator is a triple 
(name(o), precond(o), effects(o)) where:
• name(o) is a syntactic expression of the form 

n(x1,…,xk) where n is a (unique) symbol and x1,…,xk
are all the object variables that appear in o,

• precond(o) are the unions of a state-variable state 
description and some rigid relations, and

• effects(o) are sets of expressions of the form xs←vk+1
where:
• xs is a ground state variable x(v1,…vk) and 
• vk+1 is an object constant or an object variable.

Operators in the State-Variable Representation
•A state-variable planning operator is a triple (name(o), 
precond(o), effects(o)) where:

•name(o) is a syntactic expression of the form n(x1,…,xk) 
where n is a (unique) symbol and x1,…,xk are all the 
object variables that appear in o,

•looks like name of a STRIPS planning operator
•precond(o) are the unions of a state-variable state 
description and some rigid relations, and

•set of state variable equals value expressions and 
some rigid relations (as in STRIPS operators)
•values of state variables refer to state before the 
operator is applied

•effects(o) are sets of expressions of the form xs←vk+1
where:

•xs is a ground state variable x(v1,…vk) and 
•vk+1 is an object constant or an object variable.
•similar to state but assignment operator instead of 
equals sign
•updates in effects refer to state after operator is 
applied

•as for STRIPS operators, actions are ground instances of 
operators
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DWR Example: State-Variable 
Operators

move(r,l,m)
• precond: rloc(r)=l, adjacent(l,m)
• effects: rloc(r)←m

load(r,c,l)
• precond: rloc(r)=l, cpos(c)=l, rload(r)=nil
• effects: cpos(c)←r, rload(r)←c

unload(r,c,l)
• precond: rloc(r)=l, rload(r)=c
• effects: rload(r)←nil, cpos(c)←l

DWR Example: Operators
•simplified domain: no piles, no cranes – only three operators:
•move(r,l,m)

•move robot r from location l to adjacent location m

•precond: rloc(r)=l, adjacent(l,m)
•adjacent: rigid relation

•effects: rloc(r)←m
•load(r,c,l)

•robot r loads container c at location l
•precond: rloc(r)=l, cpos(c)=l, rload(r)=nil
•effects: cpos(c)←r, rload(r)←c

•unload(r,c,l)
•robot r unloads container c at location l
•precond: rloc(r)=l, rload(r)=c
•effects: rload(r)←nil, cpos(c)←l
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Applicability and State 
Transitions

Let a be an action and s a state. Then a is 
applicable in s iff:
• all rigid relations mentioned in precond(a) hold, and
• if xs=c ∈ precond(a) then xs=c ∈ s.

The state transition function γ for an action a in 
state s is defined as γ(s,a) = {xs=c | x∈X} 
where:
• xs←c ∈ effects(a) or
• xs=c ∈ s otherwise.

Applicability and State Transitions
•Let a be an action and s a state. Then a is applicable in s iff:

•all rigid relations mentioned in precond(a) hold, and
•as in STRIPS representation

•if xs=c ∈ precond(a) then xs=c ∈ s.
•if values of state variables in preconditions agree with 
same values in state

•The state transition function γ for an action a in state s is 
defined as γ(s,a) = {xs=c | x∈X} where:

•xs←c ∈ effects(a) or
•update the values of state variables in the effects

•xs=c ∈ s otherwise.
•keep other values from previous state
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State-Variable Planning 
Domains

Let X be a set of state-variable functions. A 
state-variable planning domain on X is a 
restricted state-transition system Σ=(S,A,γ) such 
that:
• S is a set of state-variable state descriptions,
• A is a set of ground instances of some state-variable 

planning operators O,
• γ:S×A→S where 

• γ(s,a)= {xs=c | x∈X and xs←c ∈ effects(a) or xs=c ∈ s
otherwise} if a is applicable in s

• γ(s,a)=undefined otherwise,
• S is closed under γ

State-Variable Planning Domains
• Let X be a set of state-variable functions. A state-variable 

planning domain on X is a restricted state-transition 
system Σ=(S,A,γ) such that:

• S is a set of state-variable state descriptions,
• A is a set of ground instances of some state-variable 

planning operators O,
• γ:S×A→S where 

• γ(s,a)= {xs=c | x∈X and xs←c ∈ effects(a) or 
xs=c ∈ s otherwise} if a is applicable in s

• γ(s,a)=undefined otherwise,
• S is closed under γ
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State-Variable Planning 
Problems

A state-variable planning problem is a 
triple P=(Σ,si,g) where:
• Σ=(S,A,γ) is a state-variable planning domain 

on some set of state-variable functions X
• si∈S is the initial state
• g is a set of expressions of the form xs=c

describing the goal such that the set of goal 
states is: Sg={s∈S | xs=c ∈ s}

State-Variable Planning Problems
•A state-variable planning problem is a triple P=(Σ,si,g) 
where:

•Σ=(S,A,γ) is a state-variable planning domain on some 
set of state-variable functions X
•si∈S is the initial state
•g is a set of expressions of the form xs=c describing the 
goal such that the set of goal states is: Sg={s∈S | xs=c ∈
s}

•a goal is a specification of the values of some ground 
state variables
•goals are like preconditions without rigid relations

•definitions for plan, reachable states, and solutions as for 
propositional case
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Relevance and Regression Sets
Let P=(Σ,si,g) be a state-variable planning 
problem. An action a∈A is relevant for g if 
• g ⋂ effects(a) ≠ {} and
• for every xs=c ∈ g, there is no xs←d ∈ effects(a) such 

that c≠d. 
The regression set of g for a relevant action 
a∈A is:
• γ -1(g,a)=(g - ϑ(a)) ∪ precond(a) where
• ϑ(a) = {xs=c | xs←c ∈ effects(a)}

definition for all regression sets Γ<(g) exactly 
as for propositional case

Relevance and Regression Sets
•Let P=(Σ,si,g) be a state-variable planning problem. An 
action a∈A is relevant for g if 

•g ⋂ effects(a) ≠ {} and
•a has an effect that contributes to g

•for every xs=c ∈ g, there is no xs←d ∈ effects(a) such 
that c≠d. 

•effects of a do not change any of the state variables in 
g

•The regression set of g for a relevant action a∈A is:
•γ -1(g,a)=(g - ϑ(a)) ∪ precond(a) where
•ϑ(a) = {xs=c | xs←c ∈ effects(a)}

•necessary to change syntax: replace left arrow with 
equals sign
•otherwise definition is as before

•definition for all regression sets Γ<(g) exactly as for 
propositional case
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Statement of a State-Variable 
Planning Problem

A statement of a state-variable planning 
problem is a triple P=(O,si,g) where:
• O is a set of planning operators in an 

appropriate state-variable planning domain 
Σ=(S,A,γ) on X

• si is the initial state in an appropriate state-
variable planning problem P=(Σ,si,g)

• g is a goal in the same state-variable planning 
problem P

Statement of a State-Variable Planning Problem
•A statement of a state-variable planning problem is a triple 
P=(O,si,g) where:

•O is a set of planning operators in an appropriate state-
variable planning domain Σ=(S,A,γ) on X
•si is the initial state in an appropriate state-variable 
planning problem P=(Σ,si,g)
•g is a goal in the same state-variable planning problem 
P
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Translation: STRIPS to State-
Variable Representation

Let P=(O,si,g) be a statement of a classical 
planning problem. In the operators O, in the 
initial state si, and in the goal g:
• replace every positive literal p(t1,…,tn) with a state-

variable expression p(t1,…,tn)=1 or p(t1,…,tn)←1 in the 
operators’ effects, and

• replace every negative literal ¬p(t1,…,tn) with a state-
variable expression p(t1,…,tn)=0 or p(t1,…,tn)←0 in the 
operators’ effects.

Translation: STRIPS to State-Variable Representation
•Let P=(O,si,g) be a statement of a classical planning 
problem. In the operators O, in the initial state si, and in the 
goal g:

•replace every positive literal p(t1,…,tn) with a state-
variable expression p(t1,…,tn)=1 or p(t1,…,tn)←1 in the 
operators’ effects, and
•replace every negative literal ¬p(t1,…,tn) with a state-
variable expression p(t1,…,tn)=0 or p(t1,…,tn)←0 in the 
operators’ effects.

•result is a statement of a state-variable planning problem
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Translation: State-Variable to 
STRIPS Representation

Let P=(O,si,g) be a statement of a state-
variable planning problem. In the operators’
preconditions, in the initial state si, and in the 
goal g:
• replace every state-variable expression p(t1,…,tn)=v

with an atom p(t1,…,tn,v), and
in the operators’ effects:
• replace every state-variable assignment p(t1,…,tn)←v

with a pair of literals p(t1,…,tn,v), ¬p(t1,…,tn,w), and 
add p(t1,…,tn,w) to the respective operators 
preconditions.

Translation: State-Variable to STRIPS Representation
•Let P=(O,si,g) be a statement of a state-variable planning 
problem. In the operators’ preconditions, in the initial state 
si, and in the goal g:

•replace every state-variable expression p(t1,…,tn)=v
with an atom p(t1,…,tn,v), and

•in the operators’ effects:
•replace every state-variable assignment p(t1,…,tn)←v
with a pair of literals p(t1,…,tn,v), ¬p(t1,…,tn,w), and add 
p(t1,…,tn,w) to the respective operators preconditions.

•result is a statement of a STRIPS planning problem
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Overview

Simple Task Networks
HTN Planning
Extensions
State-Variable Representation

Overview
Simple Task Networks

•HTN Planning
•Extensions
•State-Variable Representation

•just done: different style of representation (used in O-Plan/I-
Plan)


