Hierarchical Task Networks

- Planning to perform tasks rather than to achieve goals
Literature

HTN Planning

• HTN planning:
 • objective: perform a given set of tasks
 • input includes:
 • set of operators
 • set of methods: recipes for decomposing a complex task into more primitive subtasks
 • planning process:
 • decompose non-primitive tasks recursively until primitive tasks are reached

HTN Planning

• HTN planning:
 • world state represented by set of atoms and actions correspond to deterministic state transitions
 • objective: perform a given set of tasks
 • previously: achieve some goals
 • input includes:
 • set of operators
 • set of methods: recipes for decomposing a complex task into more primitive subtasks
 • methods: at a higher level of abstraction
 • primitive task: can be performed directly by an operator instance
 • planning process:
 • decompose non-primitive tasks recursively until primitive tasks are reached
 • HTN most widely used technique for real-world planning applications
 • methods are a natural way to encode recipes (which should lead to solution plans only; reduces search significantly)
 • methods reflect the way experts think about planning problems
Overview

- Simple Task Networks
 - HTN Planning
 - Extensions
 - State-Variable Representation

Overview

- Simple Task Networks
 - now: representation and planning algorithms for STNs

- HTN Planning
- Extensions
- State-Variable Representation
STN Planning

• **STN: Simple Task Network**
 - STN: simplified version of the more general HTN case to be discussed later

• **what remains:**
 - terms, literals, operators, actions, state transition function, plans

• **what’s new:**
 - tasks to be performed
 - methods describing ways in which tasks can be performed
 - organized collections of tasks called task networks
DWR Stack Moving Example

• task: move stack of containers from pallet p1 to pallet p3 in a way the preserves the order
 • preserve order: each container should be on same container it is on originally

• (informal) methods:
 • methods: possible subtasks and how they can be accomplished
 • move via intermediate: move stack to intermediate pile (reversing order) and then to final destination (reversing order again)
 • move stack: repeatedly move the topmost container until the stack is empty
 • move topmost: take followed by put action

• action: no further decomposition required

• note: abstract concept: stack
Tasks

• **task symbols**: $T_S = \{t_1, \ldots, t_n\}$
 - used for giving unique names to tasks
 - operator names $\not\subset T_S$: primitive tasks
 - non-primitive task symbols: T_S - operator names

• **task**: $t_i(r_1, \ldots, r_k)$
 - t_i: task symbol (primitive or non-primitive)
 - tasks: primitive iff task symbol is primitive
 - r_1, \ldots, r_k: terms, objects manipulated by the task
 - ground task: are ground

• action a **accomplishes** ground primitive task $t_i(r_1, \ldots, r_k)$ in state s iff
 - name(a) = t_i and
 - a is applicable in s

Note: unique operator names, hence primitive tasks can only be performed in one way – no search!
Simple Task Networks

A simple task network w is an acyclic directed graph (U,E) in which

- the node set $U = \{t_1, \ldots, t_n\}$ is a set of tasks and
- the edges in E define a partial ordering of the tasks in U.

A task network w is ground/primitive if all tasks $t_u \in U$ are ground/primitive, otherwise it is unground/non-primitive.

simple task network: shortcut “task network”
Totally Ordered STNs

- ordering: $t_u \prec t_v$ in $w=(U,E)$ iff there is a path from t_u to t_v
- STN w is totally ordered iff E defines a total order on U
 - w is a sequence of tasks: (t_1, \ldots, t_n)
- Let $w = \langle t_1, \ldots, t_n \rangle$ be a totally ordered, ground, primitive STN. Then the plan $\pi(w)$ is defined as:
 - $\pi(w) = \langle a_1, \ldots, a_n \rangle$ where $a_i = t_i; 1 \leq i \leq n$
STNs: DWR Example

- **tasks:**
 - \(t_1 = \text{take(crane,loc,c1,c2,p1)} \): primitive, ground
 - crane “crane” at location “loc” takes container “c1” of container “c2” in pile “p1”
 - \(t_2 = \text{take(crane,loc,c2,c3,p1)} \): primitive, ground
 - \(t_3 = \text{move-stack(p1,q)} \): non-primitive, unground
 - move the stack of containers on pallet “p2” to pallet “q” (variable)

- **task networks:**
 - \(w_1 = (\{t_1,t_2,t_3\}, \{(t_1,t_2), (t_1,t_3)\}) \)
 - partially ordered, non-primitive, unground
 - \(w_2 = (\{t_1,t_2\}, \{(t_1,t_2)\}) \)
 - totally ordered: \(w_2 = \langle t_1,t_2 \rangle \), ground, primitive
 - \(\pi(w_2) = \langle \text{take(crane,loc,c1,c2,p1)}, \text{take(crane,loc,c2,c3,p1)} \rangle \)
STN Methods

Let M_S be a set of method symbols. An **STN method** is a 4-tuple $m=(\text{name}(m), \text{task}(m), \text{precond}(m), \text{network}(m))$ where:

- **name(m):**
 - the name of the method
 - symbolic expression of the form $n(x_1,\ldots,x_k)$
 - $n \in M_S$: unique method symbol
 - x_1,\ldots,x_k: all the variable symbols that occur in m;
- **task(m):** a non-primitive task;
- **precond(m):** set of literals called the method’s preconditions;
- **network(m):** task network (U,E) containing the set of subtasks U of m.

STN Methods

- **Let M_S be a set of method symbols.** An **STN method** is a 4-tuple $m=(\text{name}(m), \text{task}(m), \text{precond}(m), \text{network}(m))$ where:
 - **method symbols:** disjoint from other types of symbols
 - **STN method:** also just called method
 - **name(m):**
 - **the name of the method**
 - **unique name:** no two methods can have the same name; gives an easy way to unambiguously refer to a method instances
 - **syntactic expression of the form $n(x_1,\ldots,x_k)$**
 - $n \in M_S$: unique method symbol
 - x_1,\ldots,x_k: all the variable symbols that occur in m;
 - **no “local” variables in method definition (may be relaxed in other formalisms)**
 - **task(m):** a non-primitive task;
 - **what task can be performed with this method**
 - **non-primitive:** contains subtasks
 - **precond(m):** set of literals called the method’s preconditions;
 - **like operator preconditions:** what must be true in state s for m to be applicable
 - **no effects:** not needed if problem is to refine/perform a task as opposed to achieving some effect.
STN Methods: DWR Example (1)

• move topmost: take followed by put action
 • simplest method from previous example

• take-and-put\((c, k, l, p_o, p_d, x_o, x_d)\)
 • using crane \(k\) at location \(l\), take container \(c\) from object \(x_o\) (container or pallet) in pile \(p_o\) and put it onto object \(x_d\) in pile \(p_d\) (\(o\) for origin, \(d\) for destination)

• task: move-topmost\((p_o, p_d)\)
 • move topmost container from pile \(p_o\) to pile \(p_d\)

• precond:
 • \(\text{top}(c, p_o), \text{on}(c, x_o):\) pile must be empty with container \(c\) on top
 • \(\text{attached}(p_o, l), \text{belong}(k, l), \text{attached}(p_d, l):\) piles and crane must be at same location
 • \(\text{top}(x_d, p_d):\) destination object must be top of its pile

• subtasks: \(\langle \text{take}(k, l, c, x_o, p_o), \text{put}(\text{take}(k, l, c, x_d, p_d)) \rangle\)
 • simple macro operator combining two (primitive) operators (sequentially)
STN Methods: DWR Example (2)

- **move stack**: repeatedly move the topmost container until the stack is empty

- **recursive-move**(p_o,p_d,c,x_o)
 - **task**: move-stack(p_o,p_d)
 - **precond**: top(c,p_o), on(c,x_o)
 - **subtasks**: (move-topmost(p_o,p_d), move-stack(p_o,p_d))

- **no-move**(p_o,p_d)
 - **task**: move-stack(p_o,p_d)
 - **precond**: top(pallet,p_o)
 - **subtasks**: ()

STN Methods: DWR Example (2)

- **move stack**: repeatedly move the topmost container until the stack is empty

- **recursive-move**(p_o,p_d,c,x_o)
 - move container c which must be on object x_o in pile p_o to the top of pile p_d
 - **task**: move-stack(p_o,p_d)
 - move the remainder of the stack from p_o to p_d: more abstract than method
 - **precond**: top(c,p_o), on(c,x_o)
 - p_o must be empty; c is the top container
 - method is not applicable to empty piles!
 - **subtasks**: (move-topmost(p_o,p_d), move-stack(p_o,p_d))
 - recursive decomposition: move top container and then recursive invocation of method through task

- **no-move**(p_o,p_d)
 - performs the task by doing nothing
 - **task**: move-stack(p_o,p_d)
 - as above
 - **precond**: top(pallet,p_o)
 - the pile must be empty (recursion ends here)
 - **subtasks**: ()
 - do nothing does nothing
STN Methods: DWR Example (3)

- move via intermediate: move stack to intermediate pile (reversing order) and then to final destination (reversing order again)

- move-stack-twice(p_o,p_i,p_d)
 - task: move-ordered-stack(p_o,p_d)
 - precond: -
 - subtasks: \(\langle\text{move-stack}(p_o,p_i),\text{move-stack}(p_i,p_d)\rangle\)

- move the stack of containers in pile p_o first to intermediate pile p_i then to p_d, thus preserving the order

- task: move-ordered-stack(p_o,p_d)
 - move the stack from p_o to p_d in an order-preserving way

- precond: -
 - none; should mention that piles must be at same location and different

- subtasks: \(\langle\text{move-stack}(p_o,p_i),\text{move-stack}(p_i,p_d)\rangle\)
 - the two stack moves
Applicability and Relevance

- A method instance m is **applicable** in a state s if
 - $\text{precond}^+(m) \subseteq s$ and
 - $\text{precond}^-(m) \cap s = \{\}$.
- A method instance m is **relevant** for a task t if
 - there is a substitution σ such that $\sigma(t) = \text{task}(m)$.
- The **decomposition** of a task t by a relevant method m under σ is
 - $\delta(t,m,\sigma) = \sigma(\text{network}(m))$ or
 - $\delta(t,m,\sigma) = \sigma(\langle\text{subtasks}(m)\rangle)$ if m is totally ordered.
Method Applicability and Relevance: DWR Example

- Task $t = \text{move-stack}(p1,q)$
- State s (as shown)

- Method instance $m_i = \text{recursive-move}(p1,p2,c1,c2)$
 - m_i is applicable in s
 - m_i is relevant for t under $\sigma = \{q\leftarrow p2\}$
Method Decomposition: DWR Example

\[\delta(t, m_i, \sigma) = \langle \text{move-topmost}(p1, p2), \text{move-stack}(p1, p2) \rangle \]

[figure]

- graphical representation (called a decomposition tree):
 - view as AND/OR-graph: AND link – both subtasks need to be performed to perform super-task
 - link is labelled with substitution and method instance used
 - arrow under label indicates order in which subtasks need to be performed
 - often leave out substitution (derivable) and sometimes method parameters (to save space)
Decomposition of Tasks in STNs

- Let
 - \(w = (U,E) \) be a STN and
 - \(t \in U \) be a task with no predecessors in \(w \) and
 - \(m \) a method that is relevant for \(t \) under some substitution \(\sigma \) with \(\text{network}(m) = (U_m,E_m) \).

- The decomposition of \(t \) in \(w \) by \(m \) under \(\sigma \) is the STN \(\delta(w,u,m,\sigma) \) where:
 - \(t \) is replaced in \(U \) by \(\sigma(U_m) \)
 - edges in \(E \) involving \(t \) are replaced by edges to appropriate nodes in \(\sigma(U_m) \).

Decomposition of Tasks in STNs

- idea: applying a method to a task in a network results in another network
- Let
 - \(w = (U,E) \) be a STN and
 - \(t \in U \) be a task with no predecessors in \(w \) and
 - \(m \) a method that is relevant for \(t \) under some substitution \(\sigma \) with \(\text{network}(m) = (U_m,E_m) \).

- The decomposition of \(t \) in \(w \) by \(m \) under \(\sigma \) is the STN \(\delta(w,u,m,\sigma) \) where:
 - \(t \) is replaced in \(U \) by \(\sigma(U_m) \)
 - edges in \(E \) involving \(t \) are replaced by edges to appropriate nodes in \(\sigma(U_m) \).

 - every node in \(\sigma(U_m) \) should come before nodes that came after \(t \) in \(E \)
 - \(\sigma(E_m) \) needs to be added to \(E \) to preserve internal method ordering
 - ordering constraints must ensure that \(\text{precond}(m) \) remains true even after subsequent decompositions
STN Planning Domains

- An **STN planning domain** is a pair $\mathcal{D}=(O,M)$ where:
 - O is a set of STRIPS planning operators and
 - M is a set of STN methods.

- \mathcal{D} is a **total-order STN planning domain** if every $m \in M$ is totally ordered.

STN Planning Domains

- **An STN planning domain** is a pair $\mathcal{D}=(O,M)$ where:
 - O is a set of STRIPS planning operators and
 - M is a set of STN methods.

- \mathcal{D} is a **total-order STN planning domain** if every $m \in M$ is totally ordered.
STN Planning Problems

- An STN planning problem is a 4-tuple \(\mathcal{P} = (\mathcal{s}_i, \mathcal{w}_i, \mathcal{O}, \mathcal{M}) \) where:
 - \(\mathcal{s}_i \) is the initial state (a set of ground atoms)
 - \(\mathcal{w}_i \) is a task network called the initial task network and
 - \(\mathcal{D} = (\mathcal{O}, \mathcal{M}) \) is an STN planning domain.

- \(\mathcal{P} \) is a total-order STN planning domain if \(\mathcal{w}_i \) and \(\mathcal{D} \) are both totally ordered.

STN Planning Problems

- An STN planning problem is a 4-tuple \(\mathcal{P} = (\mathcal{s}_i, \mathcal{w}_i, \mathcal{O}, \mathcal{M}) \) where:
 - \(\mathcal{s}_i \) is the initial state (a set of ground atoms)
 - \(\mathcal{w}_i \) is a task network called the initial task network and
 - \(\mathcal{D} = (\mathcal{O}, \mathcal{M}) \) is an STN planning domain.

- \(\mathcal{P} \) is a total-order STN planning domain if \(\mathcal{w}_i \) and \(\mathcal{D} \) are both totally ordered.
A plan \(\pi = \langle a_1, \ldots, a_n \rangle \) is a solution for an STN planning problem \(P = (s, w, O, M) \) if:

- \(w_i \) is empty and \(\pi \) is empty;
- or:
 - there is a primitive task \(t \in w_i \) that has no predecessors in \(w_i \) and
 - \(a_1 = t \) is applicable in \(s_i \) and
 - \(\pi' = \langle a_2, \ldots, a_n \rangle \) is a solution for \(P' = (y(s_i,a_1), w_i \setminus \{t\}, O, M) \)
- or:
 - there is a non-primitive task \(t \in w_i \) that has no predecessors in \(w_i \) and
 - \(m \in M \) is relevant for \(t \), i.e. \(\sigma(t) = \text{task}(m) \) and applicable in \(s_i \) and
 - \(\pi \) is a solution for \(P' = (s, \delta(w_i,t,m,\sigma), O, M) \).

STN Solutions

- if \(\pi \) is a solution for \(P \), then we say that \(\pi \) accomplishes \(P \)
- intuition: there is a way to decompose \(w_i \) into \(\pi \) such that:
 - \(\pi \) is executable in \(s_i \) and
 - each decomposition is applicable in an appropriate state of the world
- \(w_i \) is empty and \(\pi \) is empty;
- or:
 - there is a primitive task \(t \in w_i \) that has no predecessors in \(w_i \) and
 - \(a_1 = t \) is applicable in \(s_i \) and
 - \(\pi' = \langle a_2, \ldots, a_n \rangle \) is a solution for \(P' = (y(s_i,a_1), w_i \setminus \{t\}, O, M) \)
- or:
 - there is a non-primitive task \(t \in w_i \) that has no predecessors in \(w_i \) and
 - \(m \in M \) is relevant for \(t \), i.e. \(\sigma(t) = \text{task}(m) \) and applicable in \(s_i \) and
 - \(\pi \) is a solution for \(P' = (s, \delta(w_i,t,m,\sigma), O, M) \).

- 2nd and 3rd case: recursive definition
- if \(w_i \) is not totally ordered more than one node may have no predecessors and both cases may apply
Decomposition Tree: DWR Example

- choose method: recursive-move(p1,p2,c1,c2) – binds variable `q`
- decompose into two sub-tasks
 - choose method for first subtask: take-and-put: c1 from c2 onto pallet
 - decompose into subtasks – primitive subtasks (grey) cannot be decomposed/correspond to actions
- choose method for second sub-task: recursive-move (recursive part)
- decompose (recursive)
 - choose method and decompose (into primitive tasks): take-and-put: c2 from c3 onto c1
 - choose method and decompose (recursive)
 - choose method and decompose: take-and-put: c3 from pallet onto c2
 - choose method (no-move) and decompose (empty plan)

- note:
 - (grey) leaf nodes of decomposition tree (primitive tasks) are actions of solution plan
 - (blue) inner nodes represent non-primitive task; decomposition results in sub-tree rooted at task according to decomposition function `\(\delta \)`
 - no search required in this example
Ground-TFD: Pseudo Code

• TFD = Total-order Forward Decomposition; direct implementation of definition of STN solution

• function Ground-TFD(s,〈t₁,…,tₖ〉,O,M)
 • if k=0 return 〈〉
 • if t₁.isPrimitive() then
 • actions = {(a,σ) | a=σ(t₁) and a applicable in s}
 • if actions.isEmpty() then return failure
 • (a,σ) = actions.chooseOne()
 • plan ← Ground-TFD(γ(s,a),σ(〈t₂,…,tₖ〉),O,M)
 • if plan = failure then return failure
 • else return 〈a〉 ∙ plan
 • else
 • methods = {(m,σ) | m is relevant for σ(t₁) and m is applicable in s}
 • if methods.isEmpty() then return failure
 • (m,σ) = methods.chooseOne()
 • plan ← subtasks(m) ∙ σ(〈t₂,…,tₖ〉)
 • return Ground-TFD(s,plan,O,M)
TFD vs. Forward/Backward Search

- **choosing actions:**
 - TFD considers only applicable actions like forward search
 - TFD considers only relevant actions like backward search
- **plan generation:**
 - TFD generates actions execution order; current world state always known
- **lifting:**
 - Ground-TFD can be generalized to Lifted-TFD resulting in same advantages as lifted backward search

TFD vs. Forward/Backward Search

choosing actions:

- TFD considers only applicable actions like forward search
- TFD considers only relevant actions like backward search
- TFD combines advantages of both search directions – better efficiency

plan generation:

- TFD generates actions execution order; current world state always known
 - e.g. good for domain-specific heuristics

lifting:

- Ground-TFD can be generalized to Lifted-TFD resulting in same advantages as lifted backward search
- avoids generating unnecessarily many actions (smaller branching factor)
- works for initial task list that is not ground
Ground-PFD: Pseudo Code

• PFD = Partial-order Forward Decomposition; direct implementation of definition of STN solution

• function Ground-PFD(s, w, O, M)
 • if w. U={} return Ø
 • task ← {t∈U | t has no predecessors in w,E}.chooseOne()
 • if task.isPrimitive() then
 • actions = {(a,σ) | a=σ(t_i) and a applicable in s}
 • if actions.isEmpty() then return failure
 • (a,σ) = actions.chooseOne()
 • plan ← Ground-PFD(γ(s,a),σ(w-{task}),O,M)
 • if plan = failure then return failure
 • else return ⟨a⟩• plan
 • else
 • methods = {(m,σ) | m is relevant for σ(t_i) and m is applicable in s}
 • if methods.isEmpty() then return failure
 • (m,σ) = methods.chooseOne()
 • return Ground-PFD(s, δ(w,task,m,σ),O,M)
Overview

- Simple Task Networks
- HTN Planning
- Extensions
- State-Variable Representation

Overview

- **Simple Task Networks**
 - just done: representation and planning algorithms for STNs
- **HTN Planning**
 - now: generalizing the formalism and algorithm
- **Extensions**
- **State-Variable Representation**
Preconditions in STN Planning

• STN planning constraints:
 • ordering constraints: maintained in network
 • preconditions:
 • enforced by planning procedure
 • must know state to test for applicability
 • must perform forward search

• HTN Planning
 • additional bookkeeping maintains general constraints explicitly
First and Last Network Nodes

- Let
 - \(\pi = \langle a_1, \ldots, a_n \rangle \) be a solution for \(w \),
 - \(U \subseteq U \) be a set of tasks in \(w \), and
 - \(A(U') \) the subset of actions in \(\pi \) such that each \(a_i \in A(U') \) is a descendant of some \(t \in U' \) in the decomposition tree.

- Then we define:
 - \(\text{first}(U', \pi) = \text{the action } a_i \in A(U') \text{ that occurs first in } \pi \); and
 - \(\text{last}(U', \pi) = \text{the action } a_i \in A(U') \text{ that occurs last in } \pi \).

First and Last Network Nodes

• for defining the constraints in an HTN network

• Let
 - \(\pi = \langle a_1, \ldots, a_n \rangle \) be a solution for \(w \),
 - HTN solution will be defined later
 - \(U' \subseteq U \) be a set of tasks in \(w \), and
 - \(A(U') \) the subset of actions in \(\pi \) such that each \(a_i \in A(U') \) is a descendant of some \(t \in U' \) in the decomposition tree.

• Then we define:
 - \(\text{first}(U', \pi) = \text{the action } a_i \in A(U') \text{ that occurs first in } \pi \); and
 - \(\text{last}(U', \pi) = \text{the action } a_i \in A(U') \text{ that occurs last in } \pi \).

• network is partially ordered; solution is totally ordered
 - for a given set of subtasks, one action decomposing \(U' \) must occur first/last in the solution plan
Hierarchical Task Networks

• A (hierarchical) task network is a pair \(w = (U, C) \), where:
 • \(U \) is a set of tasks and
 • \(C \) is a set of constraints of the following types:
 • \(t_1 \prec t_2 \): precedence constraint between tasks satisfied if in every solution \(\pi \): \(\text{last}(\{t_1, \pi\}) < \text{first}(\{t_2, \pi\}) \);
 • \(\text{before}(U', I) \): satisfied if in every solution \(\pi \): literal \(I \) holds in the state just before \(\text{first}(U', \pi) \);
 • \(\text{after}(U', I) \): satisfied if in every solution \(\pi \): literal \(I \) holds in the state just after \(\text{last}(U', \pi) \);
 • \(\text{between}(U', U'', I) \): satisfied if in every solution \(\pi \): literal \(I \) holds in every state after \(\text{last}(U', \pi) \) and before \(\text{first}(U'', \pi) \).
HTN Methods

- extension of the definition of an STN method

Let \(M_S \) be a set of method symbols. An HTN method is a 4-tuple
\[
m = (\text{name}(m), \text{task}(m), \text{subtasks}(m), \text{constr}(m))
\]
where:
- \(\text{name}(m) \):
 - the name of the method
 - syntactic expression of the form \(n(x_1, \ldots, x_k) \)
 - \(n \in M_S \): unique method symbol
 - \(x_1, \ldots, x_k \): all the variable symbols that occur in \(m \);
- \(\text{task}(m) \): a non-primitive task;
- \((\text{subtasks}(m), \text{constr}(m)) \): a task network.
HTN Methods: DWR Example (1)

- move topmost: take followed by put action
- take-and-put(c,k,l,p_o,p_d,x_o,x_d)
 - task: move-topmost(p_o,p_d)
 - network:
 - subtasks: \{t_1=\text{take}(k,l,c,x_o,p_o), t_2=\text{put}(k,l,c,x_d,p_d)\}
 - constraints: \{t_1 < t_2, \text{before}\{t_1\}, \text{top}(c,p_o)),
 \text{before}\{t_1\}, \text{on}(c,x_o)), \text{before}\{t_1\}, \text{attached}(p_o,l)),
 \text{before}\{t_1\}, \text{belong}(k,l)), \text{before}\{t_2\}, \text{attached}(p_d,l)),
 \text{before}\{t_2\}, \text{top}(x_d,p_d))\}

 • note: before-constraints refer to both tasks; more precise than STN representation of preconditions
HTN Methods: DWR Example (2)

- move stack: repeatedly move the topmost container until the stack is empty
- recursive-move(p_o,p_d,c,x_o)
 - task: move-stack(p_o,p_d)
 - network:
 - subtasks: \{ t_1=move-topmost(p_o,p_d), t_2=move-stack(p_o,p_d) \}
 - constraints: \{ t_1<t_2, before({t_1}, top(c,p_o)), before({t_1}, on(c,x_o)) \}
- move-one(p_o,p_d,c)
 - task: move-stack(p_o,p_d)
 - network:
 - subtasks: \{ t_1=move-topmost(p_o,p_d) \}
 - constraints: \{ before({t_1}, top(c,p_o)), before({t_1}, on($c,pallet$)) \}

- move-stack-twice(p_o,p_i,p_d) trivial; not shown again
HTN Decomposition

Let \(w=(U,C) \) be a task network, \(t \in U \) a task, and \(m \) a method such that \(\sigma(\text{task}(m))=t \). Then the decomposition of \(t \) in \(w \) using \(m \) under \(\sigma \) is defined as:

\[
\delta(w,t,m,\sigma) = ((U\setminus\{t\})\cup\sigma(\text{subtasks}(m)), C'\cup\sigma(\text{constr}(m)))
\]

where \(C' \) is modified from \(C \) as follows:

- for every precedence constraint in \(C \) that contains \(t \), replace it with precedence constraints containing \(\sigma(\text{subtasks}(m)) \) instead of \(t \); and
- for every before-, after-, or between constraint over tasks \(U' \) containing \(t \), replace \(U' \) with \((U'\setminus\{t\})\cup\sigma(\text{subtasks}(m)) \).

new, additional constraints may introduce threats that need to be resolved

where \(C' \) is modified from \(C \) as follows:

- for every precedence constraint in \(C \) that contains \(t \), replace it with precedence constraints containing \(\sigma(\text{subtasks}(m)) \) instead of \(t \); and
- for every before-, after-, or between constraint over tasks \(U' \) containing \(t \), replace \(U' \) with \((U'\setminus\{t\})\cup\sigma(\text{subtasks}(m)) \).

example: let subtasks(\(m \))=\{\(t_1, t_2 \)\} and \(t<t'<C \)

- then replace \(t<t' \) with \(t_1<t' \) and \(t_2<t' \)
 - cannot introduce inconsistencies (circles) since subtasks are new nodes

example (other constraints): let subtasks(\(m \))=\{\(t_1, t_2 \)\} and before(\{\(t,t' \},l \})\in C

- then replace before(\{\(t,t' \},l \}) with before(\{\(t_1,t_2,t' \},l \})
 - cannot introduce inconsistencies either
HTN Decomposition: Example

- network: \(w = \{ \{ t_1 = \text{move-stack}(p1,q) \} \} \)
 - initial, single task with no constraints
- \(\delta(w, t_1, \text{recursive-move}(p_o,p_d,c,x_o), \{ p_o \leftarrow p1, p_d \leftarrow q \}) = w' = \)
 - \(\{ t_2 = \text{move-topmost}(p1,q), t_3 = \text{move-stack}(p1,q) \} \),
 - 2 instantiated subtasks from method
 - \{ \(t_2 < t_3 \), before(\{ \(t_2 \) \}, top(c,p1)), before(\{ \(t_2 \) \}, on(c,x_o)) \}
 - instantiated constraints from method
- \(\delta(w', t_2, \text{take-and-put}(c,k,l,p_o,p_d,x_o,x_d), \{ p_o \leftarrow p1, p_d \leftarrow q \}) = \)
 - \(\{ t_3 = \text{move-stack}(p1,q), t_4 = \text{take}(k,l,c,x_o,p1), t_5 = \text{put}(k,l,c,x_d,q) \} \),
 - \(t_3 \): from input network \(w' \); \(t_4 \) and \(t_5 \) from method
 - \{ \(t_4 < t_3 \), \(t_5 < t_3 \),
 - ordering did involve \(t_2 \) – replace with two constraints for new subtasks \(t_4 \) and \(t_5 \)
 - before(\{ \(t_4, t_5 \) \}, top(c,p1)), before(\{ \(t_4, t_5 \) \}, on(c,x_o)) \} \cup
 - replaced \{ \(t_2 \) \} with \{ \(t_4, t_5 \) \}
 - \{ \(t_4 < t_5 \), before(\{ \(t_4 \) \}, top(c,p1)), before(\{ \(t_4 \) \}, on(c,x_o)),
 - before(\{ \(t_4 \) \}, attached(p1,l)), before(\{ \(t_4 \) \}, belong(k,l)),
 - before(\{ \(t_5 \) \}, attached(q,l)), before(\{ \(t_5 \) \}, top(x_d,q)) \})
 - instantiated constraints from new method
HTN Planning Domains and Problems

• An **HTN planning domain** is a pair $\mathcal{D}=(O,M)$ where:
 • O is a set of STRIPS planning operators and
 • M is a set of HTN methods.

• An **HTN planning problem** is a 4-tuple $\mathcal{P}=(s_i, w_i, O, M)$ where:
 • s_i is the initial state (a set of ground atoms)
 • w_i is a task network called the *initial task network* and
 • $\mathcal{D}=(O,M)$ is an HTN planning domain.
Solutions for Primitive HTNs

Let \((U, C)\) be a primitive HTN. A plan \(\pi = \langle a_1, \ldots, a_n \rangle\) is a solution for \(\mathcal{P} = (s_p, (U, C), O, M)\) if there is a ground instance \((\sigma(U), \sigma(C))\) of \((U, C)\) and a total ordering \(\langle t_1, \ldots, t_n \rangle\) of tasks in \(\sigma(U)\) such that:

- for \(i = 1, \ldots, n\): name\((a_i)\) = \(t_i\);
- \(\pi\) is executable in \(s_p\), i.e. \(\gamma(s_p, \pi)\) is defined;
- the ordering of \(\langle t_1, \ldots, t_n \rangle\) respects the ordering constraints in \(\sigma(C)\);
- for every constraint before \((U', l)\) in \(\sigma(C)\) where \(t_k = \text{first}(U', \pi)\): \(l\) must hold in \(\gamma(s_p, \langle a_1, \ldots, a_{k-1} \rangle)\);
- for every constraint after \((U', l)\) in \(\sigma(C)\) where \(t_k = \text{last}(U', \pi)\): \(l\) must hold in \(\gamma(s_p, \langle a_1, \ldots, a_k \rangle)\);
- for every constraint between \((U', U'', l)\) in \(\sigma(C)\) where \(t_k = \text{first}(U', \pi)\) and \(t_m = \text{last}(U'', \pi)\): \(l\) must hold in every state \(\gamma(s_p, \langle a_1, \ldots, a_j \rangle), j \in \{k \ldots m-1\}\).
Solutions for Non-Primitive HTNs

• Let \(w = (U,C) \) be a non-primitive HTN. A plan \(\pi = \langle a_1, \ldots, a_n \rangle \) is a solution for \(\mathcal{P} = (s, w, O, M) \) if there is a sequence of task decompositions that can be applied to \(w \) such that:
 * the result of the decompositions is a primitive HTN \(w' \); and
 * \(\pi \) is a solution for \(\mathcal{P}' = (s, w', O, M) \).
Abstract-HTN: Pseudo Code

• general schema for a function that implements HTN planning
• function Abstract-HTN(s,U,C,O,M)
• if (U,C).isInconsistent() then return failure
 • e.g. test for inconsistency of C, or apply other, domain-specific tests
• if U.isPrimitive() then
 • no further decompositions of tasks possible
• return extractSolution(s,U,C,O)
 • compute a total-order, grounded plan; may fail
• else
 • network still contains decomposable tasks
• return decomposeTask(s,U,C,O,M)
 • will recursively call Abstract-HTN function
extractSolution: Pseudo Code

function extractSolution(s, U, C, O)

\[\langle t_1, \ldots, t_n \rangle \leftarrow U.\text{chooseSequence}(C) \]

\[\langle a_1, \ldots, a_n \rangle \leftarrow \langle t_1, \ldots, t_n \rangle.\text{chooseGrounding}(s, C, O) \]

if \(\langle a_1, \ldots, a_n \rangle.\text{satisfies}(C) \) then

\[\text{return} \ \langle a_1, \ldots, a_n \rangle \]

return failure

extractSolution: Pseudo Code

- **function extractSolution(s, U, C, O)**

- \[\langle t_1, \ldots, t_n \rangle \leftarrow U.\text{chooseSequence}(C) \]

 - non-deterministically choose a serialization of the tasks in \(U \) that respects the ordering constraints in \(C \)

- \[\langle a_1, \ldots, a_n \rangle \leftarrow \langle t_1, \ldots, t_n \rangle.\text{chooseGrounding}(s, C, O) \]

 - non-deterministically choose a grounding of the variables in \(t_1, \ldots, t_n \)

 - use \(s \) and \(C \) to ensure constraints hold, and \(O \) for type information if present

- if \(\langle a_1, \ldots, a_n \rangle.\text{satisfies}(C) \) then

 - this test can be performed during the grounding

- return \(\langle a_1, \ldots, a_n \rangle \)

 - plan is a solution, return it

- return failure
decomposeTask: Pseudo Code

- function decomposeTask(s,U,C,O,M)
 - t ← U.nonPrimitives().selectOne()
 - deterministically select a non-primitive task-node from the network
 - no backtracking required, all tasks must be decomposed eventually; selection important for efficiency
 - methods ← {(m,σ) | m∈M and σ(task(m))= σ(t)}
 - substitution should be mgu for least commitment planner (generates smaller search space)
 - if methods.isEmpty() then return failure
 - (m,σ) ← methods.chooseOne()
 - non-deterministically choose a method that can be applied to decompose the task
 - (U',C') ← δ((U,C),t,m,σ)
 - compute the decomposition
 - (U',C') ← (U',C').applyCritic()
 - optional; may make arbitrary modifications, e.g. application-specific computations
 - soundness and completeness depends on this function
 - return Abstract-HTN(s,U',C',O,M)
HTN vs. STRIPS Planning

• Since
 • HTN is generalization of STN Planning, and
 • STN problems can encode undecidable problems, but
 • STRIPS cannot encode such problems:

• STN/HTN formalism is more expressive
 • non-recursive STN can be translated into equivalent STRIPS problem
 • but exponentially larger in worst case
 • “regular” STN is equivalent to STRIPS

• non-recursive
 • at most one non-primitive subtask per method
 • non-primitive sub-task must be last in sequence
Overview

Simple Task Networks

HTN Planning
 • just done: generalizing the formalism and algorithm

Extensions
 • now: approaches to extending the formalism and algorithm

State-Variable Representation
Functions in Terms

- allow function terms in world state and method constraints
- ground versions of all planning algorithms may fail
 - potentially infinite number of ground instances of a given term
- lifted algorithms can be applied with most general unifier
 - least commitment approach instantiates only as far as necessary
 - plan-existence may not be decidable
Axiomatic Inference

- use theorem prover to infer derived knowledge within world states
 - undecidability of first-order logic in general
- idea: use restricted (decidable) subset of first-order logic: Horn clauses
 - only positive preconditions can be derived
 - precondition \(p \) is satisfied in state \(s \) iff \(p \) can be proved in \(s \)

- semantics of negative preconditions: closed world assumption?
Attached Procedures

• associate predicates with procedures
• modify planning algorithm
 • evaluate preconditions by
 • calling the procedure attached to the predicate symbol if there is such a procedure
 • test against world state (set-relation, theorem prover) otherwise
• soundness and completeness: depends on procedures

- applications:
 • perform numeric computations
 • query external data sources
- soundness and completeness: depends on procedures
- attached procedures to function symbols: critics
High-Level Effects

- allow user to declare effects for non-primitive methods
- aim:
 - establish preconditions
 - prune partial plans if high-level effects threaten preconditions
- increases efficiency
- problem: semantics

High-Level Effects

- allow user to declare effects for non-primitive methods
- aim:
 - establish preconditions
 - prune partial plans if high-level effects threaten preconditions
- increases efficiency
- problem: semantics
 - can be defined in different ways
Other Extensions

• other constraints
 • time constraints
 • resource constraints

• extended goals
 • states to be avoided
 • required intermediate states
 • limited plan length
 • visit states multiple times
Overview

- Simple Task Networks
- HTN Planning
- Extensions
 - just done: approaches to extending the formalism and algorithm
- State-Variable Representation
 - now: different style of representation (used in O-Plan/I-Plan)
State Variables

• some relations are functions
 • example: at(r1,loc1): relates robot r1 to location loc1 in some state
 • truth value changes from state to state
 • will only be true for exactly one location l in each state

• idea: represent such relations using state-variable functions mapping states into objects
 • example: functional representation:
 rloc:robots×S→locations

• STRIPS state containing at(r1,loc1) and at(r1,loc2) usually inconsistent

• idea: represent such relations using **state-variable functions** mapping states into objects
 • advantage: reduces possibilities for inconsistent states, smaller state space

• example: **functional representation:**
 rloc:robots×S→locations
 • in general: maps objects and state into object
 • rloc is state-variable symbol that denotes state-variable function
States in the State-Variable Representation

- Let X be a set of state-variable functions. A k-ary state variable is an expression of the form $x(v_1, \ldots, v_k)$ where:
 - $x \in X$ is a state-variable function and
 - v_i is either an object constant or an object variable.

- A state-variable state description is a set of expressions of the form $x_s = c$ where:
 - x_s is a ground state variable $x(v_1, \ldots, v_k)$ and
 - c is an object constant.

States in the State-Variable Representation

- Let X be a set of state-variable functions. A k-ary state variable is an expression of the form $x(v_1, \ldots, v_k)$ where:
 - $x \in X$ is a state-variable function and
 - v_i is either an object constant or an object variable.

- A state-variable state description is a set of expressions of the form $x_s = c$ where:
 - x_s is a ground state variable $x(v_1, \ldots, v_k)$ and
 - c is an object constant.

- As for ground atoms in STRIPS states, state is implicit
- State description will usually give all values of ground state variables
- Values of state variables are not independent
DWR Example: State-Variable State Descriptions

- **simplified:** no cranes, no piles
- **state-variable functions:**
 - `rloc: robots×S → locations`
 - `rolad: robots×S→containers ∪ {nil}`
 - `cpos: containers×S → locations ∪ robots`
- **sample state-variable state descriptions:**
 - `{rloc(r1)=loc1, rload(r1)=nil, cpos(c1)=loc1, cpos(c2)=loc2, cpos(c3)=loc2}`
 - `{rloc(r1)=loc1, rload(r1)=c1, cpos(c1)=r1, cpos(c2)=loc2, cpos(c3)=loc2}`
Operators in the State-Variable Representation

- A state-variable planning operator is a triple (name(o), precond(o), effects(o)) where:
 - name(o) is a syntactic expression of the form \(n(x_1,\ldots,x_k) \) where \(n \) is a (unique) symbol and \(x_1,\ldots,x_k \) are all the object variables that appear in \(o \),
 - precond(o) are the unions of a state-variable state description and some rigid relations, and
 - effects(o) are sets of expressions of the form \(x_s \leftarrow v_{k+1} \) where:
 - \(x_s \) is a ground state variable \(x(v_1,\ldots,v_k) \) and
 - \(v_{k+1} \) is an object constant or an object variable.

Operators in the State-Variable Representation

- A state-variable planning operator is a triple (name(o), precond(o), effects(o)) where:
 - name(o) is a syntactic expression of the form \(n(x_1,\ldots,x_k) \) where \(n \) is a (unique) symbol and \(x_1,\ldots,x_k \) are all the object variables that appear in \(o \),
 - looks like name of a STRIPS planning operator
 - precond(o) are the unions of a state-variable state description and some rigid relations, and
 - set of state variable equals value expressions and some rigid relations (as in STRIPS operators)
 - values of state variables refer to state before the operator is applied
 - effects(o) are sets of expressions of the form \(x_s \leftarrow v_{k+1} \) where:
 - \(x_s \) is a ground state variable \(x(v_1,\ldots,v_k) \) and
 - \(v_{k+1} \) is an object constant or an object variable.
 - similar to state but assignment operator instead of equals sign
 - updates in effects refer to state after operator is applied
 - as for STRIPS operators, actions are ground instances of operators
DWR Example: Operators

- simplified domain: no piles, no cranes – only three operators:
 - **move**(r,l,m)
 - move robot r from location l to adjacent location m
 - **precond**: rloc(r)=l, adjacent(l,m)
 - **effects**: rloc(r)$\leftarrow m$
 - **load**(r,c,l)
 - robot r loads container c at location l
 - **precond**: rloc(r)=l, cpos(c)=l, rload(r)=nil
 - **effects**: cpos(c)$\leftarrow r$, rload(r)$\leftarrow c$
 - **unload**(r,c,l)
 - robot r unloads container c at location l
 - **precond**: rloc(r)=l, rload(r)=c
 - **effects**: rload(r)$\leftarrow nil$, cpos(c)$\leftarrow l$
Applicability and State Transitions

Let \(a \) be an action and \(s \) a state. Then \(a \) is applicable in \(s \) iff:

- all rigid relations mentioned in \(\text{precond}(a) \) hold, and
- if \(x_s=c \in \text{precond}(a) \) then \(x_s=c \in s \).

The state transition function \(\gamma \) for an action \(a \) in state \(s \) is defined as

\[
\gamma(s,a) = \{x_s=c \mid x \in X\}
\]

where:

- \(x_s \leftarrow c \in \text{effects}(a) \) or
- \(x_s=c \in s \) otherwise.

Applicability and State Transitions

- Let \(a \) be an action and \(s \) a state. Then \(a \) is applicable in \(s \) iff:
 - all rigid relations mentioned in \(\text{precond}(a) \) hold, and
 - as in STRIPS representation
 - if \(x_s=c \in \text{precond}(a) \) then \(x_s=c \in s \).
 - if values of state variables in preconditions agree with same values in state

- The state transition function \(\gamma \) for an action \(a \) in state \(s \) is defined as
 \[
 \gamma(s,a) = \{x_s=c \mid x \in X\}
 \]
 where:
 - \(x_s \leftarrow c \in \text{effects}(a) \) or
 - \(x_s=c \in s \) otherwise.
 - update the values of state variables in the effects
 - keep other values from previous state
State-Variable Planning Domains

- Let X be a set of state-variable functions. A state-variable planning domain on X is a restricted state-transition system $\Sigma=(S,A,\gamma)$ such that:
 - S is a set of state-variable state descriptions,
 - A is a set of ground instances of some state-variable planning operators O,
 - $\gamma:S\times A\rightarrow S$ where
 - $\gamma(s,a) = \{x_s=c | x\in X \text{ and } x_s\leftarrow c \in \text{effects}(a) \text{ or } x_s=c \in s \text{ otherwise} \}$ if a is applicable in s
 - $\gamma(s,a)=\text{undefined otherwise}$,
 - S is closed under γ
State-Variable Planning Problems

- A state-variable planning problem is a triple $\mathcal{P}=(\Sigma, s_i, g)$ where:
 - $\Sigma=(S, A, \gamma)$ is a state-variable planning domain on some set of state-variable functions X
 - $s_i \in S$ is the initial state
 - g is a set of expressions of the form $x_s=c$ describing the goal such that the set of goal states is: $S_g = \{s \in S \mid x_s = c \in s\}$

- a goal is a specification of the values of some ground state variables
- goals are like preconditions without rigid relations

- definitions for plan, reachable states, and solutions as for propositional case
Relevance and Regression Sets

Let \(P=(\Sigma, s, g) \) be a state-variable planning problem. An action \(a \in A \) is relevant for \(g \) if

1. \(g \cap \text{effects}(a) \neq \emptyset \) and
2. for every \(x_s=c \in g \), there is no \(x_s\leftarrow d \in \text{effects}(a) \) such that \(c\neq d \).

The regression set of \(g \) for a relevant action \(a \in A \) is:

- \(\gamma^{-1}(g, a)=(g - \theta(a)) \cup \text{precond}(a) \) where
- \(\theta(a) = \{ x_s=c \mid x_s\leftarrow c \in \text{effects}(a) \} \)
- definition for all regression sets \(\Gamma<(g) \) exactly as for propositional case

Relevance and Regression Sets

Let \(P=(\Sigma, s, g) \) be a state-variable planning problem. An action \(a \in A \) is relevant for \(g \) if

1. \(g \cap \text{effects}(a) \neq \emptyset \) and
2. \(a \) has an effect that contributes to \(g \)
3. for every \(x_s=c \in g \), there is no \(x_s\leftarrow d \in \text{effects}(a) \) such that \(c\neq d \).

- effects of \(a \) do not change any of the state variables in \(g \)

The regression set of \(g \) for a relevant action \(a \in A \) is:

- \(\gamma^{-1}(g, a)=(g - \theta(a)) \cup \text{precond}(a) \) where
- \(\theta(a) = \{ x_s=c \mid x_s\leftarrow c \in \text{effects}(a) \} \)

- necessary to change syntax: replace left arrow with equals sign
- otherwise definition is as before

Definition for all regression sets \(\Gamma<(g) \) exactly as for propositional case
Statement of a State-Variable Planning Problem

A statement of a state-variable planning problem is a triple \(\mathcal{P} = (\mathcal{O}, \mathcal{s}_i, \mathcal{g}) \) where:

- \(\mathcal{O} \) is a set of planning operators in an appropriate state-variable planning domain \(\Sigma = (\mathcal{S}, \mathcal{A}, \mathcal{g}) \) on \(\mathcal{X} \)
- \(\mathcal{s}_i \) is the initial state in an appropriate state-variable planning problem \(\mathcal{P} = (\Sigma, \mathcal{s}_i, \mathcal{g}) \)
- \(\mathcal{g} \) is a goal in the same state-variable planning problem \(\mathcal{P} \)
Translation: STRIPS to State-Variable Representation

- Let \(P=(O,s_i,g) \) be a statement of a classical planning problem. In the operators \(O \), in the initial state \(s_i \) and in the goal \(g \):
 - replace every positive literal \(p(t_1,\ldots,t_n) \) with a state-variable expression \(p(t_1,\ldots,t_n)=1 \) or \(p(t_1,\ldots,t_n)\leftarrow 1 \) in the operators’ effects, and
 - replace every negative literal \(\neg p(t_1,\ldots,t_n) \) with a state-variable expression \(p(t_1,\ldots,t_n)=0 \) or \(p(t_1,\ldots,t_n)\leftarrow 0 \) in the operators’ effects.

result is a statement of a state-variable planning problem
Translation: State-Variable to STRIPS Representation

Let $P=(O,s_i,g)$ be a statement of a state-variable planning problem. In the operators’ preconditions, in the initial state s_i, and in the goal g:

• replace every state-variable expression $p(t_1,\ldots,t_n)=v$ with an atom $p(t_1,\ldots,t_n,v)$, and

• in the operators’ effects:
 • replace every state-variable assignment $p(t_1,\ldots,t_n)\leftarrow v$ with a pair of literals $p(t_1,\ldots,t_n,v)$, $\neg p(t_1,\ldots,t_n,w)$, and add $p(t_1,\ldots,t_n,w)$ to the respective operators preconditions.

result is a statement of a STRIPS planning problem
Overview

- Simple Task Networks
- HTN Planning
- Extensions
- State-Variable Representation

- Simple Task Networks
 - HTN Planning
 - Extensions
 - State-Variable Representation
 - just done: different style of representation (used in O-Plan/I-Plan)