

# **Hierarchical Task Networks**

•Planning to perform tasks rather than to achieve goals

### Literature

- Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning – Theory and Practice, chapter 11. Elsevier/Morgan Kaufmann, 2004.
- E. Sacerdoti. The nonlinear nature of plans. In: Proc. IJCAI, pages 206-214, 1975.
- A. Tate. Generating project networks. In: Proc. IJCAI, pages 888-893, 1977.

Hierarchical Task Networks

# Literature

- •Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning -Theory and Practice, chapter 11. Elsevier/Morgan Kaufmann, 2004.
- •E. Sacerdoti. The nonlinear nature of plans. In: Proc. IJCAI, pages 206-214, 1975.
- •A. Tate. Generating project networks. In: Proc. IJCAI, pages 888-893, 1977.

# HTN Planning • HTN planning: • objective: perform a given set of tasks • input includes: • set of operators • set of methods: recipes for decomposing a complex task into more primitive subtasks • planning process: • decompose non-primitive tasks recursively until primitive tasks are reached

# **HTN Planning**

# •HTN planning:

 world state represented by set of atoms and actions correspond to deterministic state transitions

objective: perform a given set of tasks

•previously: achieve some goals

# •input includes:

- set of operators
- •set of methods: recipes for decomposing a complex task into more primitive subtasks
  - •methods: at a higher level of abstraction
  - primitive task: can be performed directly by an operator instance

# •planning process:

- decompose non-primitive tasks recursively until primitive tasks are reached
- •HTN most widely used technique for real-world planning applications
  - •methods are a natural way to encode recipes (which should lead to solution plans only; reduces search significantly)
  - methods reflect the way experts think about planning problems



### **Overview**

- **⇒**Simple Task Networks
  - →now: representation and planning algorithms for STNs
- HTN Planning
- Extensions
- State-Variable Representation

# **STN Planning**

- STN: Simple Task Network
- what remains:
  - terms, literals, operators, actions, state transition function, plans
- what's new:
  - tasks to be performed
  - · methods describing ways in which tasks can be
  - organized collections of tasks called task networks

Hierarchical Task Networks

**STN Planning** 

# STN: Simple Task Network

•STN: simplified version of the more general HTN case to be discussed later

## •what remains:

•terms, literals, operators, actions, state transition function, plans

### ·what's new:

- tasks to be performed
- methods describing ways in which tasks can be performed
- organized collections of tasks called task networks



# **DWR Stack Moving Example**

•task: move stack of containers from pallet p1 to pallet p3 in a way the preserves the order

 preserve order: each container should be on same container it is on originally

# •(informal) methods:

methods: possible subtasks and how they can be accomplished

 move via intermediate: move stack to intermediate pile (reversing order) and then to final destination (reversing order again)

move stack: repeatedly move the topmost container until the stack is empty

•move topmost: take followed by put action

action: no further decomposition required

•note: abstract concept: stack

# Tasks • $\underline{\mathsf{task}}$ symbols: $T_S = \{t_1, \dots, t_n\}$ • operator names $\subsetneq T_S$ : primitive tasks • non-primitive task symbols: $T_S$ - operator names • $\underline{\mathsf{task}}$ : $t_i(r_1, \dots, r_k)$ • $t_i$ : task symbol (primitive or non-primitive) • $r_1, \dots, r_k$ : terms, objects manipulated by the task • ground task: are ground • action a $\underline{\mathsf{accomplishes}}$ ground primitive task • $t_i(r_1, \dots, r_k)$ in state s iff • name(a) = $t_i$ and • a is applicable in s

### Tasks

•task symbols: 
$$T_S = \{t_1, ..., t_n\}$$

- used for giving unique names to tasks
- •operator names  $\subseteq T_S$ : primitive tasks
- •non-primitive task symbols:  $T_S$  operator names

•t<sub>i</sub>: task symbol (primitive or non-primitive)

•tasks: primitive iff task symbol is primitive

 $r_1, \dots, r_k$ : terms, objects manipulated by the task

•ground task: are ground

•action a <u>accomplishes</u> ground primitive task  $t_i(r_1,...,r_k)$  in state s iff

- •action a = (name(a), precond(a), effects(a))
- •name(a) =  $t_i$  and
- •a is applicable in s

applicability: s satisfies precond(a)

•note: unique operator names, hence primitive tasks can only be performed in one way – no search!

### Simple Task Networks

- A <u>simple task network</u> w is an acyclic directed graph (U,E) in which
  - the node set  $U = \{t_1, ..., t_n\}$  is a set of tasks and
  - the edges in *E* define a partial ordering of the tasks in *U*.
- A task network w is <u>ground/primitive</u> if all tasks t<sub>u</sub>∈U are ground/primitive, otherwise it is unground/non-primitive.

**Hierarchical Task Networks** 

# **Simple Task Networks**

- •A <u>simple task network</u> w is an acyclic directed graph (*U*,*E*) in which
  - •the node set  $U = \{t_1, ..., t_n\}$  is a set of tasks and
  - •the edges in *E* define a partial ordering of the tasks in *U*.
- •A task network w is ground/primitive if all tasks  $t_u \in U$  are ground/primitive, otherwise it is unground/non-primitive.
- •simple task network: shortcut "task network"

### **Totally Ordered STNs**

- ordering: t<sub>u</sub>≺t<sub>v</sub> in w=(U,E) iff there is a path from t<sub>u</sub> to t<sub>v</sub>
- STN w is totally ordered iff E defines a total order on U
  - w is a sequence of tasks:  $\langle t_1, ..., t_n \rangle$
- Let  $w = \langle t_1, ..., t_n \rangle$  be a totally ordered, ground, primitive STN. Then the plan  $\pi(w)$  is defined as:
  - $\pi(w) = \langle a_1, ..., a_n \rangle$  where  $a_i = t_i$ ;  $1 \le i \le n$

Hierarchical Task Networks

# **Totally Ordered STNs**

- •ordering:  $t_u \prec t_v$  in w=(U,E) iff there is a path from  $t_u$  to  $t_v$
- •STN w is totally ordered iff E defines a total order on U
  - •w is a sequence of tasks:  $\langle t_1, ..., t_n \rangle$ 
    - sequence is special case of acyclic directed graph
    - • $t_1$ : first task in U;  $t_2$  :second task in U; ...;  $t_n$ : last task in U
- •Let  $w = \langle t_1, ..., t_n \rangle$  be a totally ordered, ground, primitive STN. Then the plan  $\pi(w)$  is defined as:
  - • $\pi(w) = \langle a_1, ..., a_n \rangle$  where  $a_i = t_i$ ;  $1 \le i \le n$



STNs: DWR Example

·tasks:

• $t_1$  = take(crane,loc,c1,c2,p1): primitive, ground

•carne "crane" at location "loc" takes container "c1" of container "c2" in pile "p1"

•t<sub>2</sub> = take(crane,loc,c2,c3,p1): primitive, ground

• $t_3$  = move-stack(p1,q): non-primitive, unground

move the stack of containers on pallet "p2" to pallet "q" (variable)

•task networks:

•
$$\mathbf{w}_1 = (\{t_1, t_2, t_3\}, \{(t_1, t_2), (t_1, t_3)\})$$

partially ordered, non-primitive, unground

$$\cdot w_2 = (\{t_1, t_2\}, \{(t_1, t_2)\})$$

•totally ordered:  $w_2 = \langle t_1, t_2 \rangle$ , ground, primitive

$$\cdot \pi(w_2) =$$

⟨take(crane,loc,c1,c2,p1),take(crane,loc,c2,c3,p1)⟩



### STN Methods

- •Let  $M_S$  be a set of method symbols. An <u>STN method</u> is a 4-tuple m=(name(m),task(m),precond(m),network(m)) where:
  - method symbols: disjoint from other types of symbols
  - STN method: also just called method
  - •name(*m*):
    - •the name of the method
      - •unique name: no two methods can have the same name; gives an easy way to unambiguously refer to a method instances
    - •syntactic expression of the form  $n(x_1,...,x_k)$ 
      - •n∈M<sub>S</sub>: unique method symbol
      - • $x_1,...,x_k$ : all the variable symbols that occur in m;
        - no "local" variables in method definition (may be relaxed in other formalisms)
  - •task(m): a non-primitive task;
    - what task can be performed with this method
      - non-primitive: contains subtasks
  - •precond(m): set of literals called the method's preconditions;
    - •like operator preconditions: what must be true in state s for *m* to be applicable
      - no effects: not needed if problem is to refine/perform a task as opposed to achieving



STN Methods: DWR Example (1)

•move topmost: take followed by put action

simplest method from previous example

•take-and-put( $c,k,l,p_o,p_d,x_o,x_d$ )

•using crane k at location l, take container c from object  $x_o$  (container or pallet) in pile  $p_o$  and put it onto object  $x_d$  in pile  $p_d$  (o for origin, d for destination)

•task: move-topmost(p<sub>o</sub>,p<sub>d</sub>)

•move topmost container from pile  $p_o$  to pile  $p_d$ 

# •precond:

- •top( $c,p_o$ ), on( $c,x_o$ ): pile must be empty with container c on top
- •attached( $p_o$ ,I), belong(k,I), attached( $p_d$ ,I): piles and crane must be at same location
- •top $(x_d,p_d)$ : destination object must be top of its pile

•subtasks:  $\langle take(k, l, c, x_o, p_o), put(take(k, l, c, x_d, p_d)) \rangle$ 

•simple macro operator combining two (primitive) operators (sequentially)



## STN Methods: DWR Example (2)

move stack: repeatedly move the topmost container until the stack is empty

```
•recursive-move(p_o, p_d, c, x_o)
```

•move container c which must be on object  $x_o$  in pile  $p_o$  to the top of pile  $p_d$ 

•task: move-stack( $p_o, p_d$ )

•move the remainder of the satck from  $p_o$  to  $p_d$ : more abstract than method

•precond: top( $c,p_o$ ), on( $c,x_o$ )

• $p_o$  must be empty; c is the top container

•method is not applicable to empty piles!

•subtasks:  $\langle move\text{-topmost}(p_o, p_d), move\text{-stack}(p_o, p_d) \rangle$ 

•recursive decomposition: move top container and then recursive invocation of method through task

# •no-move $(p_0, p_d)$

•performs the task by doing nothing

•task: move-stack( $p_o, p_d$ )

as above

•precond: top(pallet,p<sub>o</sub>)

•the pile must be empty (recursion ends here)

•subtasks: ⟨⟩

•do nothing does nothing

# STN Methods: DWR Example (3) • move via intermediate: move stack to intermediate pile (reversing order) and then to final destination (reversing order again) • move-stack-twice(p₀,pᵢ,p₀) • task: move-ordered-stack(p₀,p₀) • precond: • subtasks: ⟨move-stack(p₀,pᵢ),move-stack(pᵢ,p₀)⟩

# STN Methods: DWR Example (3)

- move via intermediate: move stack to intermediate pallet (reversing order) and then to final destination (reversing order again)
- •move-stack-twice( $p_o, p_i, p_d$ )
  - •move the stack of containers in pile  $p_o$  first to intermediate pile  $p_i$  then to  $p_d$ , thus preserving the order
  - •task: move-ordered-stack( $p_o, p_d$ )
    - •move the stack from  $p_o$  to  $p_d$  in an order-preserving way
  - •precond: -
    - none; should mention that piles must be at same location and different
  - •subtasks:  $\langle move-stack(p_o,p_i), move-stack(p_i,p_d) \rangle$ 
    - the two stack moves

### Applicability and Relevance

- A method instance *m* is <u>applicable</u> in a state *s* if
  - precond $^+(m) \subseteq s$  and
  - precond $(m) \cap s = \{\}.$
- A method instance *m* is relevant for a task *t* if
  - there is a substitution  $\sigma$  such that  $\sigma(t) = task(m)$ .
- The <u>decomposition</u> of a task t by a relevant method m under σ is
  - $\delta(t, m, \sigma) = \sigma(\text{network}(m))$  or
  - $\delta(t, m, \sigma) = \sigma(\langle \text{subtasks}(m) \rangle)$  if m is totally ordered.

Hierarchical Task Networks

15

# **Applicability and Relevance**

- •A method instance m is applicable in a state s if
  - •precond $^+(m) \subseteq s$  and
  - •precond $(m) \cap s = \{\}.$
- •A method instance m is relevant for a task t if
  - •there is a substitution  $\sigma$  such that  $\sigma(t)$  = task(m).
- •The <u>decomposition</u> of a task t by a relevant method m under  $\sigma$  is
  - $\bullet \delta(t, m, \sigma) = \sigma(\text{network}(m)) \text{ or }$
  - • $\delta(t,m,\sigma) = \sigma(\langle \text{subtasks}(m) \rangle)$  if m is totally ordered.



# Method Applicability and Relevance: DWR Example

- •task t = move-stack(p1,q)
- •state s (as shown)
- •method instance  $m_i$  = recursive-move(p1,p2,c1,c2)
  - • $m_i$  is applicable in s
  - • $m_i$  is relevant for t under  $\sigma = \{q \leftarrow p2\}$



# **Method Decomposition: DWR Example**

- • $\delta(t,m_i,\sigma) = \langle \text{move-topmost(p1,p2)}, \text{move-stack(p1,p2)} \rangle$
- •[figure]
- •graphical representation (called a decomposition tree):
  - •view as AND/OR-graph: AND link both subtasks need to be performed to perform super-task
  - •link is labelled with substitution and method instance used
  - arrow under label indicates order in which subtasks need to be performed
  - •often leave out substitution (derivable) and sometimes method parameters (to save space)



# **Decomposition of Tasks in STNs**

- idea: applying a method to a task in a network results in another network
- Let
- •w = (U,E) be a STN and
- •t∈U be a task with no predecessors in w and
- •*m* a method that is relevant for *t* under some substitution  $\sigma$  with network(m) = ( $U_m$ , $E_m$ ).
- •The decomposition of t in w by m under  $\sigma$  is the STN  $\delta(w,u,m,\sigma)$  where:
  - t is replaced in U by  $\sigma(U_m)$  and
    - •replacement with copy (method maybe used more than once)
  - •edges in E involving t are replaced by edges to appropriate nodes in  $\sigma(U_m)$ .
    - •every node in  $\sigma(U_m)$  should come before nodes that came after t in E
    - • $\sigma(E_m)$  needs to be added to E to preserve internal method ordering
    - •ordering constraints must ensure that precond(*m*) remains true even after subsequent decompositions

### **STN Planning Domains**

- An <u>STN planning domain</u> is a pair  $\mathcal{D}=(O,M)$  where:
  - O is a set of STRIPS planning operators and
  - *M* is a set of STN methods.
- • D is a total-order STN planning domain if every m∈M is totally ordered.

Hierarchical Task Networks

19

# **STN Planning Domains**

- •An STN planning domain is a pair  $\mathcal{D}=(O,M)$  where:
  - •O is a set of STRIPS planning operators and
  - •M is a set of STN methods.
- • $\mathcal{D}$  is a <u>total-order STN planning domain</u> if every  $m \in M$  is totally ordered.

# 

# **STN Planning Problems**

- •An STN planning problem is a 4-tuple  $\mathcal{P}=(s_i, w_i, O, M)$  where:
  - •s; is the initial state (a set of ground atoms)
  - •w<sub>i</sub> is a task network called the initial task network and
  - • $\mathcal{D}$ =(O,M) is an STN planning domain.
- • $\mathcal P$  is a <u>total-order STN planning domain</u> if  $w_i$  and  $\mathcal D$  are both totally ordered.



### **STN Solutions**

- •A plan  $\pi = \langle a_1, ..., a_n \rangle$  is a solution for an STN planning problem  $\mathcal{P}=(s_i, w_i, O, M)$  if:
  - •if  $\pi$  is a solution for  $\mathcal{P}$ , then we say that  $\underline{\pi}$  accomplishes  $\underline{P}$
  - •intuition: there is a way to decompose  $w_i$  into  $\pi$  such that:
    - • $\pi$  is executable in  $s_i$  and
    - •each decomposition is applicable in an appropriate state of the world
    - • $w_i$  is empty and  $\pi$  is empty;

·or:

- •there is a primitive task  $t \in w_i$  that has no predecessors in  $w_i$  and
- • $a_1$ =t is applicable in  $s_i$  and
- • $\pi' = \langle a_2, ..., a_n \rangle$  is a solution for  $\mathcal{P}' = (\gamma(s_i, a_1), w_i \{t\}, O, M)$

·or:

- •there is a non-primitive task  $t \in w_i$  that has no predecessors in  $w_i$  and
- • $m \in M$  is relevant for t, i.e.  $\sigma(t) = task(m)$  and applicable in  $s_i$  and
- • $\pi$  is a solution for  $\mathcal{P}'=(s_i, \delta(w_i, t, m, \sigma), O, M)$ .
- •2nd and 3rd case: recursive definition
  - •if  $w_i$  is not totally ordered more than one node may have no predecessors and both cases may apply



## **Decomposition Tree: DWR Example**

- •choose method: recursive-move(p1,p2,c1,c2) binds variable q
- decompose into two sub-tasks
- •choose method for first subtask: take-and-put: c1 from c2 onto pallet
- •decompose into subtasks primitive subtasks (grey) cannot be decomposed/correspond to actions
- •choose method for second sub-task: recursive-move (recursive part)
- decompose (recursive)
- •choose method and decompose (into primitive tasks): take-and-put: c2 from c3 onto c1
- choose method and decompose (recursive)
- •choose method and decompose: take-and-put: c3 from pallet onto c2
- choose method (no-move) and decompose (empty plan)

### •note:

- •(grey) leaf nodes of decomposition tree (primitive tasks) are actions of solution plan
- •(blue) inner nodes represent non-primitive task; decomposition results in sub-tree rooted at task according to decomposition function  $\boldsymbol{\delta}$
- no search required in this example

```
Ground-TFD: Pseudo Code
function Ground-TFD(s,\langle t_1,...,t_k \rangle,O,M)
   if k=0 return ⟨⟩
    if t_1.isPrimitive() then
        actions = \{(a,\sigma) \mid a=\sigma(t_1) \text{ and } a \text{ applicable in } s\}
        if actions.isEmpty() then return failure
        (a,\sigma) = actions.chooseOne()
        plan ← Ground-TFD(\gamma(s,a),σ(\langle t_2,...,t_k \rangle),O,M)
        if plan = failure then return failure
        else return \langle a \rangle • plan
        methods = \{(m,\sigma) \mid m \text{ is relevant for } \sigma(t_1) \text{ and } m \text{ is applicable in } s\}
        if methods.isEmpty() then return failure
        (m,\sigma) = methods.chooseOne()
        plan ← subtasks(m) • σ(\langle t_2,...
        return Ground-TFD(s,plan,O,M)
                              Hierarchical Task Networks
```

### **Ground-TFD: Pseudo Code**

- •TFD = Total-order Forward Decomposition; direct implementation of definition of STN solution
- •function Ground-TFD( $s,\langle t_1,...,t_k\rangle,O,M$ )
- •if *k*=0 return ⟨⟩
- •if t<sub>1</sub>.isPrimitive() then
- •actions =  $\{(a,\sigma) \mid a=\sigma(t_1) \text{ and } a \text{ applicable in } s\}$
- •if actions.isEmpty() then return failure
- • $(a,\sigma) = actions.chooseOne()$
- •plan  $\leftarrow$  Ground-TFD( $\gamma(s,a),\sigma(\langle t_2,...,t_k\rangle),O,M$ )
- •if plan = failure then return failure
- •else return ⟨a⟩ plan
- •else  $t_1$  is non-primitive
- •methods =  $\{(m,\sigma) \mid m \text{ is relevant for } \sigma(t_1) \text{ and } m \text{ is applicable in } s\}$
- •if methods.isEmpty() then return failure
- • $(m,\sigma) = methods.chooseOne()$
- •plan  $\leftarrow$  subtasks(m)  $\sigma(\langle t_2, ..., t_k \rangle)$
- •return Ground-TFD(s,plan,O,M)

# TFD vs. Forward/Backward Search • choosing actions: • TFD considers only applicable actions like forward search • TFD considers only relevant actions like backward search • plan generation: • TFD generates actions execution order; current world state always known • lifting: • Ground-TFD can be generalized to Lifted-TFD resulting in same advantages as lifted backward search

### TFD vs. Forward/Backward Search

# •choosing actions:

- •TFD considers only applicable actions like forward search
- •TFD considers only relevant actions like backward search
- •TFD combines advantages of both search directions better efficiency

# •plan generation:

- •TFD generates actions execution order; current world state always known
  - •e.g. good for domain-specific heuristics

# ·lifting:

- •Ground-TFD can be generalized to Lifted-TFD resulting in same advantages as lifted backward search
- avoids generating unnecessarily many actions (smaller branching factor)
- works for initial task list that is not ground

```
Ground-PFD: Pseudo Code
function Ground-PFD(s,w,O,M)
   if w.U={} return \langle \rangle task \leftarrow {t\in U | t has no predecessors in w.E}.chooseOne()
    if task.isPrimitive() then
        actions = \{(a,\sigma) \mid a=\sigma(t_1) \text{ and } a \text{ applicable in } s\}
        if actions.isEmpty() then return failure
        (a,\sigma) = actions.chooseOne()
        plan ← Ground-PFD(\gamma(s,a),\sigma(w-{task}),O,M)
        if plan = failure then return failure
        else return \langle a \rangle • plan
    else
        methods = \{(m,\sigma) \mid m \text{ is relevant for } \sigma(t_1) \text{ and } m \text{ is applicable in } s\}
        if methods.isEmpty() then return failure
        (m,\sigma) = methods.chooseOne()
        return Ground-PFD(s, δ(w,task,m,σ),O,M)
                              Hierarchical Task Networks
```

### **Ground-PFD: Pseudo Code**

- •PFD = Partial-order Forward Decomposition; direct implementation of definition of STN solution
- •function Ground-PFD(s,w,O,M)
- •if w.*U*={} return ⟨⟩
- task ← {t∈U | t has no predecessors in w.E}.chooseOne()
- •if task.isPrimitive() then
- •actions =  $\{(a,\sigma) \mid a=\sigma(t_1) \text{ and } a \text{ applicable in } s\}$
- •if actions.isEmpty() then return failure
- • $(a,\sigma) = actions.chooseOne()$
- •plan  $\leftarrow$  Ground-PFD( $\gamma(s,a),\sigma(w-\{task\}),O,M$ )
- •if *plan* = failure then return failure
- •else return ⟨a⟩ plan
- •else
- •methods =  $\{(m,\sigma) \mid m \text{ is relevant for } \sigma(t_1) \text{ and } m \text{ is applicable in } s\}$
- •if methods.isEmpty() then return failure
- • $(m,\sigma) = methods.chooseOne()$
- •return Ground-PFD(s, δ(w,task,m,σ),O,M)



### **Overview**

- **⇒**Simple Task Networks
  - ⇒just done: representation and planning algorithms for STNs
- HTN Planning
  - •now: generalizing the formalism and algorithm
- Extensions
- State-Variable Representation

### Preconditions in STN Planning

- STN planning constraints:
  - ordering constraints: maintained in network
  - preconditions:
    - enforced by planning procedure
    - must know state to test for applicability
    - must perform forward search
- HTN Planning
  - additional bookkeeping maintains general constraints explicitly

Hierarchical Task Networks

27

# **Preconditions in STN Planning**

- •STN planning constraints:
  - ordering constraints: maintained in network
  - •preconditions:
    - •enforced by planning procedure
    - must know state to test for applicability
    - must perform forward search
- HTN Planning
  - •additional bookkeeping maintains general constraints explicitly



### **First and Last Network Nodes**

- •for defining the constraints in an HTN network
- Let
- • $\pi = \langle a_1, ..., a_n \rangle$  be a solution for w,
  - •HTN solution will be defined later
- •U'⊆U be a set of tasks in w, and
- •A(U') the subset of actions in  $\pi$  such that each  $a_i \in A(U')$  is a descendant of some  $t \in U'$  in the decomposition tree.
- •Then we define:
  - •<u>first( $U',\pi$ )</u> = the action  $a_i \in A(U')$  that occurs first in  $\pi$ ; and
  - •last( $U',\pi$ ) = the action  $a_i \in A(U')$  that occurs last in  $\pi$ .
- network is partially ordered; solution is totally ordered
  - •for a given set of subtasks, one action decomposing *U'* must occur first/last in the solution plan

### Hierarchical Task Networks

- A (hierarchical) task network is a pair w=(U,C), where:
  - U is a set of tasks and
  - C is a set of constraints of the following types:
    - t<sub>1</sub><t<sub>2</sub>: precedence constraint between tasks satisfied if in every solution π: last({t},π) < first({t},π);</li>
    - before(U',I): satisfied if in every solution  $\pi$ : literal I holds in the state just before first(U', $\pi$ );
    - after(U',I): satisfied if in every solution π: literal I holds in the state just after last(U',π);
    - between(U',U",I): satisfied if in every solution π: literal I holds in every state after last(U',π) and before first(U",π).

**Hierarchical Task Networks** 

2

### **Hierarchical Task Networks**

- •A (hierarchical) task network is a pair w=(U,C), where:
  - •U is a set of tasks and
  - •C is a set of constraints of the following types:
    - • $t_1 \prec t_2$ : precedence constraint between tasks satisfied if in every solution  $\pi$ : last( $\{t\}, \pi$ )  $\prec$  first( $\{t\}, \pi$ );
      - corresponds to edge in STN
    - •before(U',I): satisfied if in every solution  $\pi$ : literal I holds in the state just before first( $U',\pi$ );
    - •after(U',I): satisfied if in every solution  $\pi$ : literal I holds in the state just after last( $U',\pi$ );
    - •between(U',U'',I): satisfied if in every solution  $\pi$ : literal I holds in every state after last( $U',\pi$ ) and before first( $U'',\pi$ ).



### **HTN Methods**

- extension of the definition of an STN method
- •Let  $M_S$  be a set of method symbols. An <u>HTN method</u> is a 4-tuple m=(name(m),task(m),subtasks(m),constr(m)) where:
  - •name(*m*):
    - •the name of the method
    - •syntactic expression of the form  $n(x_1,...,x_k)$ 
      - •n∈M<sub>S</sub>: unique method symbol
      - • $x_1,...,x_k$ : all the variable symbols that occur in m;
  - •task(m): a non-primitive task;
  - •(subtasks(m),constr(m)): a task network.

# HTN Methods: DWR Example (1)

- move topmost: take followed by put action
- take-and-put( $c,k,l,p_o,p_d,x_o,x_d$ )
  - task: move-topmost(p<sub>o</sub>,p<sub>d</sub>)
  - network:
    - subtasks:  $\{t_1 = take(k, l, c, x_o, p_o), t_2 = put(k, l, c, x_d, p_d)\}$
    - constraints:  $\{t_1 \prec t_2$ , before( $\{t_1\}$ , top( $c,p_o$ )), before( $\{t_1\}$ , on( $c,x_o$ )), before( $\{t_1\}$ , attached( $p_o$ ,l)), before( $\{t_1\}$ , belong(k,l)), before( $\{t_2\}$ , attached( $p_d$ ,l)), before( $\{t_2\}$ , top( $x_d,p_d$ ))}

Hierarchical Task Networks

31

# **HTN Methods: DWR Example (1)**

•move topmost: take followed by put action

•take-and-put( $c,k,l,p_o,p_d,x_o,x_d$ )

•task: move-topmost( $p_o, p_d$ )

•network:

•subtasks:  $\{t_1 = \text{take}(k, l, c, x_o, p_o), t_2 = \text{put}(k, l, c, x_d, p_d)\}$ 

•constraints:  $\{t_1 \prec t_2, \text{ before}(\{t_1\}, \text{ top}(c, p_o)),$ 

before( $\{t_1\}$ , on( $c,x_o$ )), before( $\{t_1\}$ , attached( $p_o,l$ )),

before( $\{t_1\}$ , belong(k,l)), before( $\{t_2\}$ , attached( $p_d,l$ )),

before( $\{t_2\}$ , top( $x_d$ , $p_d$ )) $\}$ 

•note: before-constraints refer to both tasks; more precise than STN representation of preconditions

```
 \begin{array}{c} \text{HTN Methods: DWR Example (2)} \\ \bullet \text{ move stack: repeatedly move the topmost container} \\ \text{until the stack is empty} \\ \bullet \text{ recursive-move}(p_o,p_d,c,x_o) \\ \bullet \text{ task: move-stack}(p_o,p_d) \\ \bullet \text{ network:} \\ \bullet \text{ subtasks: } \{t_1 = \text{move-topmost}(p_o,p_d), t_2 = \text{move-stack}(p_o,p_d)\} \\ \bullet \text{ constraints: } \{t_1 < t_2, \text{ before}(\{t_1\}, \text{ top}(c,p_o)), \text{ before}(\{t_1\}, \text{ on}(c,x_o))\} \\ \bullet \text{ move-one}(p_o,p_d,c) \\ \bullet \text{ task: move-stack}(p_o,p_d) \\ \bullet \text{ network:} \\ \bullet \text{ subtasks: } \{t_1 = \text{move-topmost}(p_o,p_d)\} \\ \bullet \text{ constraints: } \{\text{before}(\{t_1\}, \text{ top}(c,p_o)), \text{ before}(\{t_1\}, \text{ on}(c,\text{pallet}))\} \\ \end{array}
```

# **HTN Methods: DWR Example (2)**

move stack: repeatedly move the topmost container until the stack is empty

```
•recursive-move(p_o, p_d, c, x_o)
•task: move-stack(p_o, p_d)
•network:
•subtasks: \{t_1 = \text{move-topmost}(p_o, p_d), t_2 = \text{move-stack}(p_o, p_d)\}
•constraints: \{t_1 \prec t_2, \text{ before}(\{t_1\}, \text{ top}(c, p_o)), \text{ before}(\{t_1\}, \text{ on}(c, x_o))\}
•move-one(p_o, p_d, c)
•task: move-stack(p_o, p_d)
•network:
•subtasks: \{t_1 = \text{move-topmost}(p_o, p_d)\}
•constraints: \{\text{before}(\{t_1\}, \text{ top}(c, p_o)), \text{ before}(\{t_1\}, \text{ on}(c, p_allet))\}
•note: problem with no-move: cannot add beforeconstraint when there are no tasks
```

•move-stack-twice( $p_0, p_i, p_d$ ) trivial; not shown again

### **HTN Decomposition**

 Let w=(U,C) be a task network, t∈U a task, and m a method such that σ(task(m))=t. Then the decomposition of t in w using m under σ is defined as:

 $\bar{o}(w,t,m,\sigma) = ((U-\{t\})\cup\sigma(\text{subtasks}(m)), C'\cup\sigma(\text{constr}(m)))$ 

where C' is modified from C as follows:

- for every precedence constraint in C that contains t, replace it with precedence constraints containing σ(subtasks(m)) instead of t: and
- for every before-, after-, or between constraint over tasks U' containing t, replace U' with (U'-{t})υσ(subtasks(m)).

**Hierarchical Task Networks** 

33

# **HTN Decomposition**

•Let w=(U,C) be a task network,  $t\in U$  a task, and m a method such that  $\sigma(task(m))=t$ . Then the <u>decomposition of t in w using m under  $\sigma$  is defined as:</u>

 $\delta(w,t,m,\sigma) = ((U-\{t\}) \cup \sigma(\operatorname{subtasks}(m)), C' \cup \sigma(\operatorname{constr}(m)))$ 

 new, additional constraints may introduce threats that need to be resolved

where C' is modified from C as follows:

- •for every precedence constraint in C that contains t, replace it with precedence constraints containing  $\sigma(\text{subtasks}(m))$  instead of t; and
- •example: let subtasks(m)={ $t_1,t_2$ } and  $t < t' \in C$ 
  - •then replace  $t \prec t'$  with  $t_1 \prec t'$  and  $t_2 \prec t'$
  - •cannot introduce inconsistencies (circles) since subtasks are new nodes
- •for every before-, after-, or between constraint over tasks U' containing t, replace U' with  $(U'-\{t\})\cup\sigma(\text{subtasks}(m))$ .
- •example (other constraints): let subtasks $(m)=\{t_1,t_2\}$  and before $(\{t,t'\},l)\in C$ 
  - •then replace before( $\{t,t'\},I$ ) with before( $\{t_1,t_2,t'\},I$ )
  - •cannot introduce inconsistencies either

### HTN Decomposition: Example

- network: w = ({t₁= move-stack(p1,q)}, {})
- $\delta(w, t_1, \text{ recursive-move}(p_o, p_d, c, x_o), \{p_o \leftarrow p1, p_d \leftarrow q\}) = w' = 0$ 
  - ({t<sub>2</sub>=move-topmost(p1,q), t<sub>3</sub>=move-stack(p1,q)},
  - $\{t_2 < t_3, \text{ before}(\{t_2\}, \text{ top}(c, p1)), \text{ before}(\{t_2\}, \text{ on}(c, x_0))\}\}$
- $\delta(w', t_2, \text{ take-and-put}(c, k, l, p_o, p_d, x_o, x_d), \{p_o \leftarrow p_1, p_d \leftarrow q\}) =$ 
  - ( $\{t_3 = move-stack(p1,q), t_4 = take(k,l,c,x_o,p1), t_5 = put(k,l,c,x_d,q)\}$ ,
  - $\{t_4 \prec t_3, t_5 \prec t_3, \text{ before}(\{t_4, t_5\}, \text{ top}(c, p1)), \text{ before}(\{t_4, t_5\}, \text{ on}(c, x_o))\} \cup \{t_4 \prec t_6, \text{ before}(\{t_4\}, \text{ top}(c, p1)), \text{ before}(\{t_4\}, \text{ on}(c, x_o)), \text{ before}(\{t_4\}, \text{ attached}(p1, l)), \text{ before}(\{t_4\}, \text{ belong}(k, l)), \text{ before}(\{t_5\}, \text{ attached}(q, l)), \text{ before}(\{t_5\}, \text{ top}(x_o, q))\})$

Hierarchical Task Networks

34

# **HTN Decomposition: Example**

•network:  $w = (\{t_1 = move-stack(p1,q)\}, \{\})$ 

initial, single task with no constraints

•
$$\delta(w, t_1, recursive-move(p_o, p_d, c, x_o), \{p_o \leftarrow p1, p_d \leftarrow q\}) = w' = q$$

•(
$$\{t_2 = move - topmost(p1,q), t_3 = move - stack(p1,q)\}$$
,

2 instantiated subtasks from method

•
$$\{t_2 \prec t_3, \text{ before}(\{t_2\}, \text{ top}(c, p1)), \text{ before}(\{t_2\}, \text{ on}(c, x_o))\}$$

instantiated constraints from method

•
$$\delta(w', t_2, \text{ take-and-put}(c, k, l, p_o, p_d, x_o, x_d), \{p_o \leftarrow p1, p_d \leftarrow q\}) =$$

•(
$$\{t_3 = move-stack(p1,q), t_4 = take(k,l,c,x_o,p1), t_5 = put(k,l,c,x_d,q)\}$$
,

• $t_3$ : from input network w';  $t_4$  and  $t_5$  from method

•
$$\{t_4 \prec t_3, t_5 \prec t_3,$$

•ordering did involve  $t_2$  – replace with two constraints for new subtasks  $t_4$  and  $t_5$ 

•before(
$$\{t_4, t_5\}$$
, top( $c$ ,p1)), before( $\{t_4, t_5\}$ , on( $c$ , $x_o$ ))}  $\cup$ 

•replaced  $\{t_2\}$  with  $\{t_4, t_5\}$ 

•
$$\{t_4 \prec t_5, \text{ before}(\{t_4\}, \text{ top}(c, p1)), \text{ before}(\{t_4\}, \text{ on}(c, x_o)), \text{ before}(\{t_4\}, \text{ attached}(p1, I)), \text{ before}(\{t_4\}, \text{ belong}(k, I)), \text{ before}(\{t_5\}, \text{ attached}(q, I)), \text{ before}(\{t_5\}, \text{ top}(x_d, q))\})$$

instantiated constraints from new method

# HTN Planning Domains and Problems

- An <u>HTN planning domain</u> is a pair D=(O,M) where:
  - O is a set of STRIPS planning operators and
  - M is a set of HTN methods.
- An <u>HTN planning problem</u> is a 4-tuple

   \$\mathcal{P}=(s\_i, w\_i, O, M)\$ where:
  - s, is the initial state (a set of ground atoms)
  - w<sub>i</sub> is a task network called the initial task network and
  - $\mathcal{D}=(O,M)$  is an HTN planning domain.

Hierarchical Task Networks

35

# **HTN Planning Domains and Problems**

- •An HTN planning domain is a pair  $\mathcal{D}=(O,M)$  where:
  - O is a set of STRIPS planning operators and
  - •M is a set of HTN methods.
- •An HTN planning problem is a 4-tuple  $\mathcal{P}=(s_i, w_i, O, M)$  where:
  - • $s_i$  is the initial state (a set of ground atoms)
  - •w<sub>i</sub> is a task network called the initial task network and
  - • $\mathcal{D}$ =(O,M) is an HTN planning domain.

### Solutions for Primitive HTNs

- Let (U,C) be a primitive HTN. A plan  $\pi = \langle a_1,...,a_n \rangle$  is a solution for  $\mathcal{P} = \langle s_n(U,C),O,M \rangle$  if there is a ground instance  $(\sigma(U),\sigma(C))$  of (U,C) and a total ordering  $\langle t_1,...,t_n \rangle$  of tasks in  $\sigma(U)$  such that:
  - for i=1...n: name( $a_i$ ) =  $t_i$ ;
  - $\pi$  is executable in  $s_i$ , i.e.  $\gamma(s_i, \pi)$  is defined;
  - the ordering of  $\langle t_1, \dots, t_n \rangle$  respects the ordering constraints in
  - for every constraint before (U',I) in  $\sigma(C)$  where  $t_k$ =first $(U',\pi)$ : I must hold in  $\gamma(s_i,\langle a_1,...,a_{k-1}\rangle)$ ; for every constraint after (U',I) in  $\sigma(C)$  where  $t_k$ =last  $(U',\pi)$ : I must
  - hold in  $\gamma(s_i, \langle a_1, ..., a_k \rangle)$ ;
  - for every constraint between(U',U'',I) in  $\sigma(C)$  where  $t_k$ =first( $U',\pi$ ) and  $t_m$ =last( $U'',\pi$ ): I must hold in every state  $\gamma(s_i,\langle a_1,...,a_j\rangle)$ , j={k...m-1}.

Hierarchical Task Networks

## **Solutions for Primitive HTNs**

- •Let (U,C) be a primitive HTN. A plan  $\pi = \langle a_1, ..., a_n \rangle$  is a solution for  $\mathcal{P}=(s_n(U,C),O,M)$  if there is a ground instance  $(\sigma(U),\sigma(C))$  of (U,C) and a total ordering  $\langle t_1,...,t_n \rangle$  of tasks in  $\sigma(U)$  such that:
  - •for i=1...n: name( $a_i$ ) =  $t_i$ ;
  - • $\pi$  is executable in  $s_i$ , i.e.  $\gamma(s_i,\pi)$  is defined;
  - •the ordering of  $\langle t_1,...,t_n \rangle$  respects the ordering constraints in  $\sigma(C)$ ;
  - •for every constraint before (U',I) in  $\sigma(C)$  where  $t_k$ =first $(U',\pi)$ : I must hold in  $\gamma(s_i, \langle a_1, ..., a_{k-1} \rangle)$ ;
  - •for every constraint after(U',I) in  $\sigma(C)$  where  $t_k$ =last( $U',\pi$ ): Imust hold in  $\gamma(s_i, \langle a_1, ..., a_k \rangle)$ ;
  - •for every constraint between(U',U'',I) in  $\sigma(C)$  where  $t_k$ =first( $U',\pi$ ) and  $t_m$ =last( $U'',\pi$ ): I must hold in every state  $\gamma(s_i, \langle a_1, ..., a_i \rangle), j \in \{k...m-1\}.$

### Solutions for Non-Primitive **HTNs**

- Let w = (U,C) be a non-primitive HTN. A plan  $\pi = \langle a_1, ..., a_n \rangle$  is a solution for  $\mathcal{P}=(s_i,w,O,M)$  if there is a sequence of task decompositions that can be applied to w such that:
  - the result of the decompositions is a primitive HTN w"; and
  - $\pi$  is a solution for  $\mathcal{P}'=(s_i, w', O, M)$ .

Hierarchical Task Networks

## **Solutions for Non-Primitive HTNs**

•Let w = (U,C) be a non-primitive HTN. A plan  $\pi = \langle a_1,...,a_n \rangle$  is a solution for  $\mathcal{P}=(s_i, w, O, M)$  if there is a sequence of task decompositions that can be applied to w such that:

- •the result of the decompositions is a primitive HTN w'; and
- • $\pi$  is a solution for  $\mathcal{P}'=(s_i,w',O,M)$ .

# Abstract-HTN: Pseudo Code function Abstract-HTN(s,U,C,O,M) if (U,C).isInconsistent() then return failure if U.isPrimitive() then return extractSolution(s,U,C,O) else return decomposeTask(s,U,C,O,M)

# **Abstract-HTN: Pseudo Code**

- •general schema for a function that implements HTN planning
- •function Abstract-HTN(s,U,C,O,M)
- •if (U,C).isInconsistent() then return failure
  - •e.g. test for inconsistency of C, or apply other, domain-specific tests
- •if *U*.isPrimitive() then
  - •no further decompositions of tasks possible
- •return extractSolution(s,U,C,O)
  - •compute a total-order, grounded plan; may fail
- ·else
- network still contains decomposable tasks
- •return decomposeTask(s,U,C,O,M)
  - •will recursively call Abstract-HTN function

# extractSolution: Pseudo Code

- •function extractSolution(s,U,C,O)
- • $\langle t_1, ..., t_n \rangle \leftarrow U$ .chooseSequence(C)
  - •non-deterministically choose a serialization of the tasks in *U* that respects the ordering constraints in *C*

•
$$\langle a_1,...,a_n \rangle \leftarrow \langle t_1,...,t_n \rangle$$
.chooseGrounding(s,C,O)

- •non-deterministically choose a grounding of the variables in  $t_1, \ldots, t_n$ •use s and C to ensure constraints hold, and O for type information if present
- •if  $\langle a_1, ..., a_n \rangle$ .satisfies(C) then
  - •this test can be performed during the grounding
- •return  $\langle a_1, ..., a_n \rangle$ 
  - •plan is a solution, return it
- return failure

# $\frac{\text{decomposeTask: Pseudo Code}}{\text{function decomposeTask}(s,U,C,O,M)} \\ t \leftarrow U.\text{nonPrimitives}().\text{selectOne}() \\ methods \leftarrow \{(m,\sigma) \mid m \in M \text{ and } \sigma(\text{task}(m)) = \sigma(t)\} \\ \text{if } methods.\text{isEmpty}() \text{ then return failure} \\ (m,\sigma) \leftarrow methods.\text{chooseOne}() \\ (U',C') \leftarrow \delta((U,C),t,m,\sigma) \\ (U',C') \leftarrow (U',C').\text{applyCritic}() \\ \text{return Abstract-HTN}(s,U',C',O,M) \\ \end{cases}$

# decomposeTask: Pseudo Code

- •function decomposeTask(s,U,C,O,M)
- •t ← U.nonPrimitives().selectOne()
  - deterministically select a non-primitive task-node from the network
    - no backtracking required, all tasks must be decomposed eventually; selection important for efficiency
- •methods  $\leftarrow \{(m,\sigma) \mid m \in M \text{ and } \sigma(\mathsf{task}(m)) = \sigma(t)\}$ 
  - •substitution should be mgu for least commitment planner (generates smaller search space)
- •if methods.isEmpty() then return failure
- • $(m,\sigma) \leftarrow methods.chooseOne()$ 
  - •non-deterministically choose a method that can be applied to decompose the task
- • $(U',C') \leftarrow \delta((U,C),t,m,\sigma)$ 
  - compute the decomposition
- • $(U',C') \leftarrow (U',C')$ .applyCritic()
  - •optional; may make arbitrary modifications, e.g. applicationspecific computations
  - •soundness and completeness depends on this function
- return Abstract-HTN(s,U',C',O,M)

# HTN vs. STRIPS Planning • Since

- HTN is generalization of STN Planning, and
- STN problems can encode undecidable problems, but
- STRIPS cannot encode such problems:
- STN/HTN formalism is more expressive
- non-recursive STN can be translated into equivalent STRIPS problem
  - but exponentially larger in worst case
- "regular" STN is equivalent to STRIPS

Hierarchical Task Networks

sk Networks

# HTN vs. STRIPS Planning

- Since
  - HTN is generalization of STN Planning, and
  - •STN problems can encode undecidable problems, but
  - •STRIPS cannot encode such problems:
- •STN/HTN formalism is more expressive
- •non-recursive STN can be translated into equivalent STRIPS problem
  - ·but exponentially larger in worst case
- •"regular" STN is equivalent to STRIPS
  - non-recursive
  - •at most one non-primitive subtask per method
  - non-primitive sub-task must be last in sequence



# **Overview**

- **⇒**Simple Task Networks
- HTN Planning
  - •just done: generalizing the formalism and algorithm
- Extensions
  - •now: approaches to extending the formalism and algorithm
- State-Variable Representation

### **Functions in Terms**

- allow function terms in world state and method
- ground versions of all planning algorithms may fail
  - potentially infinite number of ground instances of a given term
- · lifted algorithms can be applied with most general unifier
  - least commitment approach instantiates only as far as
  - plan-existence may not be decidable

Hierarchical Task Networks

## **Functions in Terms**

- allow function terms in world state and method constraints
- ground versions of all planning algorithms may fail
  - potentially infinite number of ground instances of a given term
- •lifted algorithms can be applied with most general unifier
  - ·least commitment approach instantiates only as far as necessary
  - plan-existence may not be decidable

### **Axiomatic Inference**

- use theorem prover to infer derived knowledge within world states
  - undecidability of first-order logic in general
- idea: use restricted (decidable) subset of first-order logic: Horn clauses
  - only positive preconditions can be derived
  - precondition p is satisfied in state s iff p can be proved in s

Hierarchical Task Networks

4

# **Axiomatic Inference**

- use theorem prover to infer derived knowledge within world states
  - undecidability of first-order logic in general
- •idea: use restricted (decidable) subset of first-order logic: Horn clauses
  - only positive preconditions can be derived
  - •precondition p is satisfied in state s iff p can be proved in s
- •semantics of negative preconditions: closed world assumption?

### **Attached Procedures**

- associate predicates with procedures
- modify planning algorithm
  - evaluate preconditions by
    - calling the procedure attached to the predicate symbol if there is such a procedure
    - test against world state (set-relation, theorem prover) otherwise
- soundness and completeness: depends on procedures

**Hierarchical Task Networks** 

# **Attached Procedures**

- associate predicates with procedures
- modify planning algorithm
  - evaluate preconditions by
    - •calling the procedure attached to the predicate symbol if there is such a procedure
    - •test against world state (set-relation, theorem prover) otherwise
- •applications:
  - perform numeric computations
  - query external data sources
- soundness and completeness: depends on procedures
- attached procedures to function symbols: critics



# **High-Level Effects**

- •allow user to declare effects for non-primitive methods •aim:
  - establish preconditions
  - •prune partial plans if high-level effects threaten preconditions
- increases efficiency
- •problem: semantics
  - •can be defined in different ways

# Other Extensions • other constraints • time constraints • resource constraints • extended goals • states to be avoided • required intermediate states • limited plan length • visit states multiple times

# **Other Extensions**

- other constraints
  - time constraints
  - resource constraints
- extended goals
  - states to be avoided
  - required intermediate states
  - ·limited plan length
  - visit states multiple times



# **Overview**

- **⇒**Simple Task Networks
- HTN Planning
- Extensions

•just done: approaches to extending the formalism and algorithm

# State-Variable Representation

•now: different style of representation (used in O-Plan/I-Plan)



## **State Variables**

- some relations are functions
  - •example: at(r1,loc1): relates robot r1 to location loc1 in some state
    - truth value changes from state to state
    - •will only be true for exactly one location *I* in each state
      - •STRIPS state containing at(r1,loc1) and at(r1,loc2) usually inconsistent
- •idea: represent such relations using <u>state-variable functions</u> mapping states into objects
  - •advantage: reduces possibilities for inconsistent states, smaller state space
  - •example: functional representation: rloc:robots×S→locations
    - •in general: maps objects and state into object
    - •rloc is state-variable symbol that denotes state-variable function

# States in the State-Variable Representation

- Let X be a set of state-variable functions. A
   <u>k-ary state variable</u> is an expression of the
   form x(v<sub>1</sub>,...v<sub>k</sub>) where:
  - *x*∈*X* is a state-variable function and
  - $v_i$  is either an object constant or an object variable.
- A <u>state-variable state description</u> is a set of expressions of the form x<sub>s</sub>=c where:
  - $x_s$  is a ground state variable  $x(v_1,...v_k)$  and
  - c is an object constant.

Hierarchical Task Networks

**States in the State-Variable Representation** 

# •Let X be a set of state-variable functions. A k-ary state variable is an expression of the form $x(v_1,...v_k)$ where:

- •x∈X is a state-variable function and
- • $v_i$  is either an object constant or an object variable.
  - object variables as opposed to state variables
  - •ground if all  $v_i$  are object constants
  - •additionally: v<sub>i</sub> may be typed
- •state variable is a characteristic attribute of a state
- •A <u>state-variable state description</u> is a set of expressions of the form  $x_s$ =c where:
  - • $x_s$  is a ground state variable  $x(v_1,...v_k)$  and
  - •c is an object constant.
  - •as for ground atoms in STRIPS states, state is implicit
  - •state description will usually give all values of ground state variables
  - values of state variables are not independent

# DWR Example: State-Variable State Descriptions • simplified: no cranes, no piles • state-variable functions: • rloc: robots×S → locations • rolad: robots×S→containers ∪ {nil} • cpos: containers×S → locations ∪ robots • sample state-variable state descriptions: • {rloc(r1)=loc1, rload(r1)=nil, cpos(c1)=loc1, cpos(c2)=loc2, cpos(c3)=loc2} • {rloc(r1)=loc1, rload(r1)=c1, cpos(c1)=r1, cpos(c2)=loc2, cpos(c3)=loc2}

# **DWR Example: State-Variable State Descriptions**

•simplified: no cranes, no piles

robots can load and unload containers autonomously

•state-variable functions:

•rloc: robots×S → locations

·location of a robot in a state

•rolad: robots×S→containers ∪ {nil}

 what a robot has loaded in a state; nil for nothing loaded

•cpos: containers×S → locations ∪ robots

•where a container is in a state; at a location or on some robot

•sample state-variable state descriptions:

•{rloc(r1)=loc1, rload(r1)=nil, cpos(c1)=loc1, cpos(c2)=loc2, cpos(c3)=loc2}

•{rloc(r1)=loc1, rload(r1)=c1, cpos(c1)=r1, cpos(c2)=loc2, cpos(c3)=loc2}

# Operators in the State-Variable Representation • A state-variable planning operator is a triple (name(o), precond(o), effects(o)) where: • name(o) is a syntactic expression of the form $n(x_1,...,x_k)$ where n is a (unique) symbol and $x_1,...,x_k$ are all the object variables that appear in o, • precond(o) are the unions of a state-variable state description and some rigid relations, and • effects(o) are sets of expressions of the form $x_s - v_{k+1}$ where: • $x_s$ is a ground state variable $x(v_1,...,v_k)$ and • $v_{k+1}$ is an object constant or an object variable.

# Operators in the State-Variable Representation

- •A <u>state-variable planning operator</u> is a triple (name(o), precond(o), effects(o)) where:
  - •name(o) is a syntactic expression of the form  $n(x_1,...,x_k)$  where n is a (unique) symbol and  $x_1,...,x_k$  are all the object variables that appear in o,
    - •looks like name of a STRIPS planning operator
  - precond(o) are the unions of a state-variable state description and some rigid relations, and
    - •set of state variable equals value expressions and some rigid relations (as in STRIPS operators)
    - •values of state variables refer to state before the operator is applied
  - •effects(o) are sets of expressions of the form  $x_s \leftarrow v_{k+1}$  where:
    - • $x_s$  is a ground state variable  $x(v_1,...v_k)$  and
    - • $v_{k+1}$  is an object constant or an object variable.
    - •similar to state but assignment operator instead of equals sign
    - •updates in effects refer to state after operator is applied
- •as for STRIPS operators, actions are ground instances of operators

```
DWR Example: State-Variable
Operators

• move(r,l,m)
• precond: rloc(r)=l, adjacent(l,m)
• effects: rloc(r)←m

• load(r,c,l)
• precond: rloc(r)=l, cpos(c)=l, rload(r)=nil
• effects: cpos(c)←r, rload(r)←c

• unload(r,c,l)
• precond: rloc(r)=l, rload(r)=c
• effects: rload(r)←nil, cpos(c)←l

Hierarchical Task Networks

53
```

# **DWR Example: Operators**

•simplified domain: no piles, no cranes – only three operators:

•move(*r*,*l*,*m*)

•move robot *r* from location *l* to adjacent location *m* 

•precond: rloc(r)=I, adjacent(I,m)

adjacent: rigid relation

•effects: rloc(r)←m

•load(*r*,*c*,*l*)

•robot r loads container c at location I

•precond: rloc(r)=I, cpos(c)=I, rload(r)=nil

•effects:  $cpos(c) \leftarrow r$ ,  $rload(r) \leftarrow c$ 

•unload(*r,c,l*)

•robot r unloads container c at location I

•precond: rloc(r)=I, rload(r)=c

•effects: rload(r)←nil, cpos(c)←I

# Applicability and State Transitions • Let a be an action and s a state. Then a is applicable in s iff: • all rigid relations mentioned in precond(a) hold, and • if x<sub>s</sub>=c ∈ precond(a) then x<sub>s</sub>=c ∈ s. • The state transition function y for an action a in state s is defined as y(s,a) = {x<sub>s</sub>=c | x∈X} where: • x<sub>s</sub>-c ∈ effects(a) or • x<sub>s</sub>=c ∈ s otherwise.

# **Applicability and State Transitions**

•Let a be an action and s a state. Then a is applicable in s iff:

**Hierarchical Task Networks** 

- •all rigid relations mentioned in precond(a) hold, and
  - •as in STRIPS representation
- •if  $x_s = c \in \text{precond}(a)$  then  $x_s = c \in s$ .
  - •if values of state variables in preconditions agree with same values in state
- •The state transition function y for an action a in state s is defined as  $y(s,a) = \{x_s = c \mid x \in X\}$  where:
  - • $x_s \leftarrow c \in effects(a)$  or
    - •update the values of state variables in the effects
  - • $x_s$ = $c \in s$  otherwise.
    - •keep other values from previous state



# **State-Variable Planning Domains**

- Let X be a set of state-variable functions. A <u>state-variable</u> <u>planning domain on X is a restricted state-transition</u> system  $\Sigma = (S, A, \gamma)$  such that:
  - S is a set of state-variable state descriptions,
  - A is a set of ground instances of some state-variable planning operators O,
  - v:S×A→S where
    - $\gamma(s,a)=\{x_s=c\mid x\in X \text{ and } x_s\leftarrow c\in \text{effects}(a) \text{ or } x_s=c\in s \text{ otherwise}\} \text{ if } a \text{ is applicable in } s$
    - γ(s,a)=undefined otherwise,
  - S is closed under y

# State-Variable Planning **Problems**

- A <u>state-variable planning problem</u> is a triple  $\mathcal{P}=(\Sigma, s_i, g)$  where:
  - $\Sigma = (S, A, \gamma)$  is a state-variable planning domain on some set of state-variable functions X
  - s<sub>i</sub>∈S is the initial state
  - g is a set of expressions of the form x<sub>s</sub>=c describing the goal such that the set of goal states is:  $S_a = \{s \in S \mid x_s = c \in s\}$

**Hierarchical Task Networks** 

# **State-Variable Planning Problems**

- •A state-variable planning problem is a triple  $\mathcal{P}=(\Sigma, s_i, g)$ where:
  - • $\Sigma$ =(S,A,y) is a state-variable planning domain on some set of state-variable functions X
  - •s<sub>i</sub>∈S is the initial state
  - •g is a set of expressions of the form  $x_s$ =c describing the goal such that the set of goal states is:  $S_q = \{s \in S \mid x_s = c \in S \mid x_s = c \in S \mid x_s = c \in S \}$ s}
    - •a goal is a specification of the values of some ground state variables
    - •goals are like preconditions without rigid relations
- •definitions for plan, reachable states, and solutions as for propositional case



# **Relevance and Regression Sets**

- •Let  $\mathcal{P}=(\Sigma, s_i, g)$  be a state-variable planning problem. An action  $a \in A$  is relevant for g if
  - • $g \cap effects(a) \neq \{\}$  and
    - •a has an effect that contributes to g
  - •for every  $x_s=c \in g$ , there is no  $x_s\leftarrow d \in effects(a)$  such that  $c\neq d$ .
    - •effects of a do not change any of the state variables in g
- •The <u>regression set</u> of g for a relevant action  $a \in A$  is:
  - $\gamma^{-1}(g,a)=(g-\vartheta(a))\cup \operatorname{precond}(a)$  where
  - • $\vartheta(a) = \{x_s = c \mid x_s \leftarrow c \in \text{effects}(a)\}$ 
    - •necessary to change syntax: replace left arrow with equals sign
    - otherwise definition is as before
- •definition for <u>all regression sets</u>  $\Gamma^{<}(g)$  exactly as for propositional case

# Statement of a State-Variable Planning Problem

- A <u>statement of a state-variable planning</u> <u>problem</u> is a triple P=(O,s<sub>i</sub>,g) where:
  - O is a set of planning operators in an appropriate state-variable planning domain Σ=(S,A,y) on X
  - $s_i$  is the initial state in an appropriate statevariable planning problem  $\mathcal{P}=(\Sigma, s_i, g)$
  - g is a goal in the same state-variable planning problem p

Hierarchical Task Networks

Task Networks

# Statement of a State-Variable Planning Problem

- •A statement of a state-variable planning problem is a triple  $P=(O,s_i,g)$  where:
  - •O is a set of planning operators in an appropriate statevariable planning domain  $\Sigma = (S, A, \gamma)$  on X
  - • $s_i$  is the initial state in an appropriate state-variable planning problem  $\mathcal{P}=(\Sigma, s_i, g)$
  - •g is a goal in the same state-variable planning problem  $\mathcal{P}$

# Translation: STRIPS to State-Variable Representation • Let $P=(O,s_i,g)$ be a statement of a classical planning problem. In the operators O, in the initial state $s_i$ , and in the goal g: • replace every positive literal $p(t_1,...,t_n)$ with a state-variable expression $p(t_1,...,t_n)=1$ or $p(t_1,...,t_n)-1$ in the operators' effects, and • replace every negative literal $\neg p(t_1,...,t_n)$ with a state-variable expression $p(t_1,...,t_n)=0$ or $p(t_1,...,t_n)-0$ in the operators' effects.

Translation: STRIPS to State-Variable Representation

•Let  $P=(O,s_i,g)$  be a statement of a classical planning problem. In the operators O, in the initial state  $s_i$ , and in the goal g:

Hierarchical Task Networks

•replace every positive literal  $p(t_1,...,t_n)$  with a state-variable expression  $p(t_1,...,t_n)=1$  or  $p(t_1,...,t_n)\leftarrow 1$  in the operators' effects, and

•replace every negative literal  $\neg p(t_1,...,t_n)$  with a state-variable expression  $p(t_1,...,t_n)=0$  or  $p(t_1,...,t_n)\leftarrow 0$  in the operators' effects.

•result is a statement of a state-variable planning problem

# Translation: State-Variable to STRIPS Representation

- Let P=(O,s<sub>i</sub>,g) be a statement of a statevariable planning problem. In the operators' preconditions, in the initial state s<sub>i</sub>, and in the goal q:
  - replace every state-variable expression  $p(t_1,...,t_n)=v$  with an atom  $p(t_1,...,t_n,v)$ , and
- in the operators' effects:
  - replace every state-variable assignment  $p(t_1,...,t_n) \leftarrow v$  with a pair of literals  $p(t_1,...,t_n,v)$ ,  $\neg p(t_1,...,t_n,w)$ , and add  $p(t_1,...,t_n,w)$  to the respective operators preconditions.

**Hierarchical Task Networks** 

# Translation: State-Variable to STRIPS Representation

•Let  $P=(O,s_i,g)$  be a statement of a state-variable planning problem. In the operators' preconditions, in the initial state  $s_i$ , and in the goal g:

•replace every state-variable expression  $p(t_1,...,t_n)=v$  with an atom  $p(t_1,...,t_n,v)$ , and

•in the operators' effects:

•replace every state-variable assignment  $p(t_1,...,t_n) \leftarrow v$  with a pair of literals  $p(t_1,...,t_n,v)$ ,  $\neg p(t_1,...,t_n,w)$ , and add  $p(t_1,...,t_n,w)$  to the respective operators preconditions.

•result is a statement of a STRIPS planning problem



# **Overview**

- **⇒**Simple Task Networks
- HTN Planning
- Extensions
- State-Variable Representation
  - •just done: different style of representation (used in O-Plan/I-Plan)