Neural Decoding

Mark van Rossum

School of Informatics, University of Edinburgh

January 2012

Acknowledgements: Chris Williams and slides from Gatsby Liam Paninski.

Version: January 24, 2018
Why decoding?

Understanding the neural code.

- Given spikes, what was the stimulus?
- What aspects of the stimulus does the system encode? (capacity is limited)
- What information can be extracted from spike trains:
 - By “downstream” areas? Homunculus.
 - By the experimenter? Ideal observer analysis.
- What is the coding quality?
- Design of neural prosthetic devices

Related to encoding, but encoding does not answer above questions explicitly.
Decoding examples

- Hippocampal place cells: how is location encoded?
- Retinal ganglion cells: what information is sent to the brain? What is discarded?
- Motor cortex: how can we extract as much information as possible from a collection of M1 cells?
Overview

1. Stimulus reconstruction (single spiking neuron, dynamic stimuli)
2. Spike train discrimination (spike based)
3. Stimulus discrimination (single neuron, rate based, static stimulus \(s = \{ s_a, s_b \} \))
4. Population decoding (multiple neurons, rate based, static stimulus \(s \in \mathbb{R} \))
5. Dynamic population decoding (\(s(t) \in \mathbb{R} \))
1. Spike train decoding

- Dayan and Abbott §3.4, Rieke Chap 2 and Appendix
- Estimate the stimulus from spike times t_i to minimize e.g. $\langle s(t) - s_{est}(t) \rangle^2$
- First order reconstruction:

$$s_{est}(t - \tau_0) = \sum_{t_i} K(t - t_i) - \langle r \rangle \int d\tau K(\tau)$$

- The second term ensures that $\langle s_{est}(t) \rangle = 0$
- Delay τ_0 can be included to make decoding easier: predict stimulus at time $t - \tau_0$ based on spikes up to time t (see causal decoding below)
Acausal Minimization

- Let \(r(t) = \sum \delta(t - t_i) \)
- Minimizing squared error (similar to Wiener kernels) gives implicit equation for optimal \(K \)

\[
\int_{-\infty}^{\infty} d\tau' Q_{rr}(\tau - \tau')K(\tau') = Q_{rs}(\tau - \tau_0)
\]

where

\[
Q_{rr}(\tau - \tau') = \frac{1}{T} \int_0^T dt \langle (r(t - \tau) - \langle r \rangle)(r(t - \tau') - \langle r \rangle) \rangle
\]

\[
Q_{rs}(\tau - \tau_0) = \langle r \rangle C(\tau_0 - \tau)
\]

where \(C(\tau) = \langle \frac{1}{n} \sum_i s(t_i - \tau) \rangle \) is STA from encoding slides.
Or use Fourier space

\[\tilde{K}(\omega) = \frac{\tilde{Q}_{rs}(\omega) \exp(i \omega \tau_0)}{\tilde{Q}_{rr}(\omega)} \]

Note, one can design the stimulus (e.g. Gaussian white noise), but one can not design the response \(r(t) \).

If \(Q_{rr}(\tau) \approx \langle r \rangle \delta(\tau) \) (tends to happen at low rates, hence not very relevant) then \(K \) is the STA, so decoder equals encoder

\[K(\tau) = \frac{1}{\langle n \rangle} \left\langle \sum_{i=1}^{n} s(t_i + \tau - \tau_0) \right\rangle \]

Note, for constant Poisson process \(Q_{rr}(\tau) \approx \langle r \rangle \delta(\tau) \)
Define reconstruction quality as: $\gamma = 1 - \left[\frac{\langle (s_{est} - s)^2 \rangle}{\sigma_s} \right]^{1/2}$.

An I&F transmits more information than Poisson (cf. encoding).
- H1 neuron of the fly
- Solid line is reconstruction using acausal filter
- Note, reconstruction quality will depend on stimulus

Organism faces causal (on-line) decoding problem.

Requires $K(t - t_i) = 0$ for $t \leq t_i$.

$$s_{est}(t - \tau_0) = \sum_{t_i} K(t - t_i) - \langle r \rangle \int d\tau K(\tau)$$

Delay τ_0 buys extra time
Delay $\tau_0 = 160$ ms. (C: full (non-causal) kernel)

At time t estimate $s(t - \tau_0)$:

Spikes 1..4: contribute because stimulus is correlated (right tail of K)

Spikes 5..7: contribute because of τ_0

Spikes 8, 9,... : have not occurred yet.

[Dayan and Abbott (2001)]
Finding *optimal* kernel while imposing causality analytically is harder.

- Hope that $K(\tau) = 0$ for $\tau < 0$ and τ_0 sufficiently large.
- Wiener-Hopf method (spectral factorization)
- Expand $K(\tau)$ using a causal basis
- Use discrete formulation
Higher order reconstruction

Build a library of spike patterns (up to triplets). Measure mean and covariance of $P(s \mid \{t_0, t_1, \ldots\})$. Reconstruct with weighted sum of means, §A6 [Rieke et al., 1996]

Figure 2.16
Reconstructions (dark lines) of angular velocity (thin line) using reconstruction depth of 1, 2, and 3 spike sequences (from bottom). Reconstructions using only single spike sequences (bottom) capture large fluctuations in the stimulus but miss many details. Including sequences of two spikes (middle) improves the reconstructions, but clearly the reconstructions systematically overestimate some aspects of the stimulus. These systematic errors are reduced in reconstructions based on triplets of spikes (top).
Conclusion stimulus reconstruction

- Stimulus reconstruction similar to encoding problem. But
 - Response is given, can not be choosen to be white
 - Imposing causality adds realism but reduces quality

- The reconstruction problem can be ill-posed. It is not always possible to reconstruct stimulus (cf dictionary). For instance: complex cell.

 Still, the cell provides information about the stimulus. Could try to read the code, rather than reconstruct the stimulus (e.g. ideal observer)
2. Spike train discrimination

Given two spike trains. How similar are they, or how they compare to template?
Problem: very high dimensional space.

Cricket auditory neuron in response to 2 songs, 5 repeats/song [Machens et al., 2003]
’Edit distance’: two processes [Victor and Purpura, 1997]
- Deleting/inserting a spike costs 1
- Moving a spike costs $\frac{1}{2}[1 - \exp(-|\delta t|/\tau)]$, with parameter τ.
Simpler algorithm:
Convolve (filter) with a exponential \(\tilde{f}(t) = \sum_{t_i < t} \exp\left(-\frac{(t - t_i)}{t_c}\right) \)
and calculate \(L_2 \) distance

\[
D^2 = \frac{1}{t_c} \int_0^T dt [\tilde{f}(t) - \tilde{g}(t)]^2
\]

Similar to coherence of between trains [van Rossum, 2001]
Application to cricket auditory neurons: Play songs repeatedly and discriminate [Machens et al., 2003]

Optimal discrimination when τ similar to neural integration time
Spike distances

Using spike distance to measure intrinsic noise:

- $\sigma^2_{\text{intrinsic}}$
- σ^2_{add}
- D^4
- $\text{Variance of added noise}$
Dayan and Abbott §3.2

\(p(s|r) \), where \(r \) is response across neurons and/or time

In general \(s \) can be continuous, e.g. speed

First, discrimination i.e. distinguishing between two (or more) alternatives (e.g. stimulus or no stimulus)

For now no time-dependent problems.
SNR and ROC curves

Discriminate between response distributions $P(r_1)$ and $P(r_2)$. ROC: vary decision threshold and measure error rates. Larger area under curve means better discriminability. Shape relates to underlying distributions.

For Gaussian distributed responses define single number

$$SNR = 2 \frac{[\langle r_1 \rangle - \langle r_2 \rangle]^2}{\text{var}(r_1) + \text{var}(r_2)}$$

Note, $SNR = 2 \frac{|\langle r_1 \rangle - \langle r_2 \rangle|}{\text{sd}(r_1) + \text{sd}(r_2)}$ is also used, neither is principled when $\text{var}(r_1) \neq \text{var}(r_2)$.
Some single neurons do as well as animal!
Possibility for averaging might be limited due to correlation?
Population might still be faster [Cohen and Newsome, 2009]
[Hung et al., 2005]
- Recording from \(\sim 300 \) sites in the Inferior Temporal (IT) cortex
- Present images of 77 stimuli (of different objects) at various locations and scales in the visual field.
- Task is to categorize objects into 8 classes, or identify all 77 objects
- Predictions based on one-vs-rest linear SVM classifiers, using data in 50 ms bins from 100 ms to 300 ms after stimulus onset
Fig. 1. Accurate readout of object category and identity from IT population activity. (A) Example of multi-unit spiking responses of 3 independently recorded sites to 5 of the 77 objects. Rasters show spikes in the 200 ms after stimulus onset for 10 repetitions (black bars indicate object presentation). (B) Performance of a linear classifier over the entire object set on test data (not used for training) as a function of the number of sites for reading out object category (red, chance = 12.5%) or identity (blue, chance = 1.3%). The input from each site was the spike count in consecutive 50-ms bins from 100 to 300 ms after stimulus onset (28). Sequentially recorded sites were combined by assuming independence (Supporting Online Material). In this and subsequent figures, error bars show the SD for 20 random choices of the sites used for training; the dashed lines show chance levels, and the bars next to the dashed lines show the range of performances using the 200 ms before stimulus onset (control). (C) Categorization performance (n = 64 sites, mean ± SEM) for different data sources used as input to the classifier: multi-unit activity (MUA) as shown in (B), single-unit activity (SUA), and local field potentials (LFP, Supporting Online Material). (D) This confusion matrix describes the pattern of mistakes made by the classifier (n = 256 sites). Each row indicates the actual category presented to the monkey (29), and each column indicates the classifier predictions (in color code).
What does this tell us?

- Performance of such classifiers provides a lower bound on the information available in the population activity.
- If neurons were measured independently (paper is unclear), correlations are ignored. Correlation could limit or enhance information...
- Distributed representation
- Linear classifier can plausibly be implemented in neural hardware
Visual system decoding: independence

[Abbott et al., 1996] Face cells, rate integrated over 500ms, extrapolated to large #stimuli. Extract face identity from population response.

Coding is almost independent! (for these small ensembles)
4. Population Encoding

- Dayan and Abbott §3.3
- Population encoding uses a large number of neurons to represent information
- Advantage 1: reduction of uncertainty due to neuronal variability (Improves reaction time).
- Advantage 2: Ability to represent a number of different stimulus attributes simultaneously (e.g. in V1 location and orientation).
At low velocities, information about wind direction is encoded by just four interneurons

\[
\left(\frac{f(s)}{r_{\text{max}}} \right) = [\cos(s - s_a)]_+
\]

Note, rate coding assumed.
Let \mathbf{c}_a denote a unit vector in the direction of s_a, and \mathbf{v} be a unit vector parallel to the wind velocity

$$
\left(\frac{f(s)}{r_{\text{max}}} \right) = [\mathbf{v} \cdot \mathbf{c}_a]_+
$$

Crickets are Cartesian, 4 directions $45^\circ, 135^\circ, -135^\circ, -45^\circ$

Population vector is defined as

$$
\mathbf{v}_{\text{pop}} = \sum_{a=1}^{4} \left(\frac{r}{r_{\text{max}}} \right)_a \mathbf{c}_a
$$
Vector method of decoding

Certain neurons in M1 of the monkey can be described by cosine functions of arm movement direction (Georgopoulos et al, 1982).

Similar to cricket cercal system, but note:

- Non-zero offset rates r_0

\[
\left(\frac{f(s) - r_0}{r_{\text{max}}} \right) = \mathbf{v} \cdot \mathbf{c}_a
\]

- Non-orthogonal: there are many thousands of M1 neurons that have arm-movement-related tuning curves.
Calculate

\[p(s|r) = \frac{p(r|s)p(s)}{p(r)} \]

- Maximum likelihood decoding (ML): \(\hat{s} = \arg\max_s p(r|s) \)
- Maximum a posteriori (MAP): \(\hat{s} = \arg\max_s p(s)p(r|s) \)
- Bayes: minimize loss

\[s_B = \arg\min_{s^*} \int_s L(s, s^*)p(s|r)ds \]

- For squared loss \(L(s, s^*) = (s - s^*)^2 \), optimal \(s^* \) is posterior mean, \(s_B = \int_s p(s|r)s \).
For the cercal system, assuming indep. noise

\[p(r|s) = \prod_a p(r_a|s) \]

where each \(p(r_a|s) \) is modelled as a Gaussian with means and variances

- \(p(s) \) is uniform (hence MAP=ML)
- ML decoding finds a peak of the likelihood
- Bayesian method finds posterior mean
- These methods improve performance over the vector method (but not that much, due to orthogonality...)

Optimal Decoding for the cricket
Cricket Cercal System

maximum likelihood

Bayesian

General Consideration of Population Decoding

[Dayan and Abbott (2001)]
Poisson firing model over time T, count $n_a = r_a T$ spikes.

\[
p(r|s) = \prod_{a=1}^{N} \frac{(f_a(s)T)^{n_a}}{n_a!} \exp(-f_a(s)T)
\]

\[
\log p(r|s) = \sum_{a=1}^{N} n_a \log f_a(s) + \ldots
\]

Approximating that $\sum_a f_a(s)$ is independent of s
ML decoding

- s_{ML} is stimulus that maximizes $\log p(r|s)$, determined by

$$\sum_{a=1}^{N} r_a \frac{f'_a(s_{ML})}{f_a(s_{ML})} = 0$$

- If all tuning curves are Gaussian $f_a = A \exp[-(s - s_a)^2/2\sigma_w^2]$ then

$$s_{ML} = \frac{\sum_a r_a s_a}{\sum_a r_a}$$

which is simple and intuitive, known as Center of Mass (cf population vector).
Accuracy of the estimator

- **Bias and variance of an estimator** s_{est}

\[
\begin{align*}
 b_{est}(s) &= \langle s_{est} \rangle - s \\
 \sigma_{est}^2(s) &= \langle (s_{est} - \langle s_{est} \rangle)^2 \rangle \\
 \langle (s - s_{est})^2 \rangle &= b_{est}^2(s) + \sigma_{est}^2
\end{align*}
\]

- Thus for an unbiased estimator, MSE $\langle (s - s_{est})^2 \rangle$ is given by σ_{est}^2, the variance of the estimator.
Fisher information

- Fisher information is a measure of the curvature of the log likelihood near its peak

\[I_F(s) = \left\langle - \frac{\partial^2 \log p(r|s)}{\partial s^2} \right\rangle_s = - \int d r p(r|s) \frac{\partial^2 \log p(r|s)}{\partial s^2} \]

(the average is over trials measuring \(r \) while \(s \) is fixed)

- Cramér-Rao bound says that for any estimator [Cover and Thomas, 1991]

\[\sigma_{\text{est}}^2 \geq \left(1 + b'_{\text{est}}(s) \right)^2 \frac{1}{I_F(s)} \]

- efficient estimator if \(\sigma_{\text{est}}^2 = \frac{(1+b'_{\text{est}}(s))^2}{I_F(s)} \).

In the bias-free case an efficient estimator \(\sigma_{\text{est}}^2 = 1/I_F(s) \).

- ML decoder is typically efficient when \(N \to \infty \).
In homogeneous systems I_F indep. of s.

More generally Fisher matrix $(I_F)_{ij}(s) = \left\langle -\frac{\partial^2 \log p(r|s)}{\partial s_i \partial s_j} \right\rangle_s$.

Taylor expansion of Kullback-Leibler $D_{KL}(P(s), P(s + \delta s)) \approx \sum_{ij} \delta s_i \delta s_j (I_F)_{ij}$

Not a Shannon information measure (not in bits), but related to Shannon information in special cases, e.g. [Brunel and Nadal, 1998, Yarrow et al., 2012].
For independent Poisson spikers

\[I_F(s) = \left\langle - \frac{\partial^2 \log p(r|s)}{\partial s^2} \right\rangle = T \sum_a \langle r_a \rangle \left(\left(\frac{f'_a(s)}{f_a(s)} \right)^2 - \frac{f''_a(s)}{f_a(s)} \right) \]

For dense, symmetric tuning curves, the second term sums to zero. Using \(f_a(s) = \langle r_a \rangle \) we obtain

\[I_F(s) = T \sum_a \frac{(f'_a(s))^2}{f_a(s)} \]

For dense \(f_a(s) = Ae^{-(s-s_0+a.ds)^2/2\sigma_w^2} \) with density \(\rho = 1/ds \), sum becomes integral

\[I_F = \sqrt{2\pi} TA\rho/\sigma_w \]
For Gaussian tuning curves

Note that Fisher information vanishes at peak as $f'_a(s) = 0$ there

Reference:
- Dayan and Abbott (2001)
Slope as strategy

Fig. 4. Prediction for other sensory systems (olfaction). Color map, schematic odor trail; gray line, path of an organism that followed the trail’s peak concentration. This strategy is typically assumed for odor-trail following (3). Black line, path of the same organism when using a strategy similar to that of our bats, that is, following the maximum slope of the odorant concentration (17). The movement jitter in this case is smaller, making the tracking smoother and therefore faster.

From paper on bat echo location [Yovel et al., 2010]
Population codes and noise correlations

Noise in neurons can be correlated $p(r|s) \neq \prod_{a=1}^{N} p(r_a|s)$ Information in the code can go up or down with correlations depending on details [Oram et al., 1998, Shamir and Sompolinsky, 2004, Averbeck et al., 2006] ...
Population codes and correlations

Gaussian noise model, with stimulus dep. covariance $Q(s)$:

$$P(r|s) = \frac{1}{\sqrt{(2\pi)^N \det Q}} e^{-[r-f(s)]^T Q^{-1} [r-f(s)]/2}$$

then [Abbott and Dayan, 1999]

$$I_F = f'(s) Q^{-1}(s) f'(s) + \frac{1}{2} \text{Tr}[Q'(s) Q^{-1}(s) Q'(s) Q^{-1}(s)]$$

When $Q'(s) = 0$ and $Q_{ij} = q(|i-j|)$, can use spatial Fourier representation. I_F becomes sum of signal-to-noise ratios

$$I_F = \sum_k \frac{|\tilde{f}'(k)|^2}{\tilde{q}(k)}$$

Thus noise with same correlation length as $f'(s)$ is most harmful [Sompolinsky et al., 2002]
Heterogeneity prevents information saturation caused by correlations [Shamir and Sompolinsky, 2006, Ecker et al., 2011]

informative Fourier modes grows with N only when heterogen.

Yet, in expts reduced correlation is linked to improved performance [Cohen and Newsome, 2008]
Fit coupled I&F-model (see encoding) to retina data

[Image of coupled spiking model and stimulus filter]

[Image of ON mosaic and OFF mosaic with 120 μm scale]

[Pillow et al., 2008]
Population codes and correlations: Retina

[Pillow et al., 2008]
Optimal receptive field width?

Maximize $I_F = T \sum_a \frac{(f'_a(s))^2}{f_a(s)}$ to minimize MSE error

[Zhang and Sejnowski, 1999]

- $(f'_a(s))^2$ is large for narrow curves
- I_F is increased by including many neurons in the sum, but this is in conflict with narrow tuning: trade-off
- Gaussian tuning curves and replace sum with integral. $D = 1$: accuracy best for infinitely narrow tuning
- For $D = 2$ there is no effect of the width on I_F.
- For $D > 2$ I_F increases as tuning curves broaden [Brown and Bäcker, 2006].
- What is D in various brain areas? (93 in IT [Lehky et al., 2014])
Alternative view on optimal coding width

[Renart and van Rossum, 2012]
Consider transmission. Maximize I_{F}^{out} wrt connections.
Minimal loss if output is tuned to input. I.e. RF width depends on input.
Hippocampal Place Cell Decoding

[Brown et al., 1998]

- Encoding: place cells modelled as inhomogeneous Poisson processes
- Dynamic model: random walk
- Decoding: approximate Kalman filtering
- Approach here is to perform inference to invert the encoding process
[Brown et al., 2004]
Example: Decoding in Hippocampus

[Zhang et al., 1998]

FIG. 3. True X and Y positions of animal 1 running on figure-8 maze as compared with positions reconstructed by different methods with 25 place cells. Same 60-s segment is shown in all plots. Time window for reconstruction was 0.5 s, which was moved forward with a time step of 0.25 s. For a fair comparison of different methods, if none of 25 cells fired within time window, reconstructed position at preceding time step was used. Probabilistic or Bayesian methods were especially accurate and erratic jumps in reconstructed trajectory were reduced by a continuity constraint by using information from two consecutive time steps.
Example: Motor decoding

[Shpigelman et al., 2005]

- Rhesus monkey, 43 electrodes in M1
- Monkey controls cursors on a screen using two manipulanda to perform a centre-out reaching task
- Predict hand velocity based on 10 time bins, each of length 100 ms in all 43 neurons.
- Can use linear regression, polynomial regression, Gaussian kernel (support vector regression), spikernel (allows time warping)
- More sophisticated methods outperform linear regression, but linear is already decent

State-of-the-art w. Kalman filters [Gilja et al., 2012]
[Shpigelman et al., 2005]
Summary

- Reconstruction of temporal stimulus
- Spike distances
- Discrimination task
- Population decoding: vector method and “optimal” decoding methods
- Specialist applications using domain knowledge
Representational Capacity of Face Coding in Monkeys.

The effect of correlated variability on the accuracy of a population code.

Neural correlations, population coding and computation.

The analysis of visual motion: a comparison of neuronal and psychophysical performance.
J Neurosci, 12:4745–4765.

A Statistical Paradigm for Neural Spike Train Decoding Applied to Position prediction from
Ensemble Firing Patterns of Rat Hippocampal Place Cells.

Multiple neural spike train data analysis: state-of-the-art and future challenges.

