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Decoding brain activity

Classi�cation
Which one?

Reconstruction:
Homunculus
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The Homunculus

Flynculus [Rieke et al., 1996]
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Overview

1 Stimulus discrimination, signal detection theory
2 Maximum likelihood and MAP decoding
3 Bounds and Fisher information
4 Spike train decoding and GLMs
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Why decoding?

Understanding the neural code.
Given spikes, what was the stimulus?
What aspects of the stimulus does the system encode? (capacity
is limited)
What information can be extracted from spike trains:

By “downstream” areas? Homunculus.
By the experimenter? Ideal observer analysis.

What is the coding quality?
Design of neural prosthetic devices

Related to encoding, but encoding does not answer above questions
explicitly.
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Decoding examples

Hippocampal place cells: how is location encoded?
Retinal ganglion cells: what information is sent to the brain? What
is discarded?
Motor cortex: how can we extract as much information as possible
from a collection of M1 cells?
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Decoding theory

Probability of the stimulus, prior: P(s)
Probability of a measured neural response: P(r)
Joint probability of stimulus and response: P(r, r)
Conditional probabilities: P(r|s), P(s|r)
Marginal: P(r) =

∑
s P(r|s)P(s)

Note: P(r, s) = P(r|s)P(s) = P(s|r)P(r)

Bayes theorem:

P(s|r) =
P(r|s)P(s)

P(r)

Note that we need to know the stimulus statistics.
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Example: Discrimination between two stimuli

Test subject report left or right motion (2 alternative forced choice,
2AFC). See [Dayan and Abbott, 2002], chapter 3.2.
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MT neurons in this task

[Britten et al., 1992]

Some single neurons do as well as animal!
Possibility for averaging might be limited due to correlation?
Population might still be better/faster? [Cohen and Newsome, 2009]
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[Britten et al., 1992] Assuming rate histograms are Gaussian with equal
variance σ2, the discriminability is

d ′ =
< r >+ − < r >−

σ
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Discriminate between response distributions P(r−) and P(r+).
(directions + and −), and discrimination threshold z on firing rate:

Hit rate: β(z) = P(r ≥ z|+)

False alarm rate: α(z) = P(r ≥ z|−)

stimulus correct False
+ β 1− β
- 1− α α

Probability of correct answer: (β(z) + 1− α(z))/2
Can be used to find the optimal z.
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ROC curves

Discriminate between response distributions P(r−) and P(r+).
The Receiver Operating Characteristic (ROC) gives graphical intuition:

Vary decision threshold and measure error rates.
Larger area under curve means better discriminability.
Shape relates to underlying distributions.
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[Britten et al., 1992]

P(correct) =

∫ 1

0
βdα

When responses are Gaussian:

P(correct) =
1
2

erfc
(
< r >− − < r >+

2σ

)
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Population decoding

[Dayan and Abbott (2001) after Theunissen and Miller (1991)]

Cricket Cercal System: Information about wind direction is encoded by
four types of neurons (

f (s)

rmax

)
= [cos(s − sa)]+

14 / 54



Let ca denote a unit vector in the direction of sa, and v be a unit
vector parallel to the wind velocity(

f (s)

rmax

)
= [v · ca]+

Crickets are Cartesian, 4 directions 45◦, 135◦, −135◦, −45◦

Population vector is defined as

vpop =
4∑

a=1

(
r

rmax

)
a

ca
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Vector method of decoding

[Dayan and Abbott (2001) after Salinas and Abbott (1994)]
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Primary Motor Cortex (M1)

Certain neurons in M1 of the monkey can be described by cosine
functions of arm movement direction (Georgopoulos et al, 1982)
Similar to cricket cercal system, but note:

Non-zero offset rates r0(
f (s)− r0

rmax

)
= v · ca

Non-orthogonal: there are many thousands of M1 neurons that
have arm-movement-related tuning curves
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[Dayan and Abbott (2001) after Kandel et al (1991)]
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Optimal Decoding

p(s|r) =
p(r|s)p(s)

p(r)

Maximum likelihood decoding (ML): ŝ = argmaxs p(r|s)

Maximum a posteriori (MAP): ŝ = argmaxs p(s)p(r|s)

Note these two are equivalent if p(s) is flat.
Bayes: mimimize loss

sB = argmins∗

∫
s

L(s, s∗)p(s|r)ds

For squared loss L(s, s∗) = (s − s∗)2, optimal s∗ is posterior
mean, sB =

∫
s p(s|r)s.
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Optimal Decoding for the cricket

For the cercal system, assuming indep. noise

p(r|s) =
∏

a

p(ra|s)

where each p(ra|s) is modelled as a Gaussian with means and
variances
p(s) is uniform (hence MAP=ML)
ML decoding finds a peak of the likelihood
Bayesian method finds posterior mean
These methods improve performance over the vector method (but
not that much, due to orthogonality...)
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Cricket Cercal System

[Dayan and Abbott (2001) after Salinas and Abbott (1994)]
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General Consideration of Population Decoding

[Dayan and Abbott (2001)]

Gaussian tuning curves.
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Poisson firing model over time T , count na = raT spikes.

p(r|s) =
N∏

a=1

(fa(s)T )na

na!
exp(−fa(s)T )

log p(r|s) =
N∑

a=1

na log fa(s) + . . .

The terms in . . . are independent of s, and we assume
∑

a fa(s) is
independent of s (all neurons sum to the same average firing rate).
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ML decoding

sML is stimulus that maximizes log p(r|s), determined by

N∑
a=1

ra
f ′a(sML)

fa(sML)
= 0

If all tuning curves are Gaussian fa = A exp[−(s − sa)2/2σ2
w ] then

sML =

∑
a rasa∑

a ra

which is simple and intuitive, known as Center of Mass (cf
population vector)
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Accuracy of the estimator

Bias and variance of an estimator sest

best (s) = 〈sest〉 − s
σ2

est (s) = 〈(sest − 〈sest〉)2〉
〈(s − sest )

2〉 = b2
est (s) + σ2

est

Thus for an unbiased estimator, MSE 〈(s − sest )
2〉 is given by σ2

est ,
the variance of the estimator
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Fisher information

Fisher information is a measure of the curvature of the log
likelihood near its peak

IF (s) =

〈
−∂

2 log p(r|s)

∂s2

〉
s

= −
∫

drp(r|s)
∂2 log p(r|s)

∂s2

(the average is over trials measuring r while s is fixed)
Cramér-Rao bound says that for any estimator
[Cover and Thomas, 1991]

σ2
est ≥

(1 + b′est (s))2

IF (s)

efficient estimator if σ2
est =

(1+b′est (s))
2

IF (s)
.

In the bias-free case an efficient estimator σ2
est = 1/IF (s).

ML decoder is typically efficient when N →∞.
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Fisher information

In homogeneous systems IF indep. of s.

More generally Fisher matrix (IF )ij(s) =
〈
−∂2 log p(r|s)

∂si∂sj

〉
s
.

Taylor expansion of Kullback-Leibler
DKL(P(s),P(s + δs)) ≈

∑
ij δsiδsj(IF )ij

Not a Shannon information measure (not in bits), but related to
Shannon information in special cases,e.g.
[Brunel and Nadal, 1998, Yarrow et al., 2012].
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Fisher information for a population

For independent Poisson spikers

IF (s) =

〈
−∂

2 log p(r|s)

∂s2

〉
= T

∑
a

〈ra〉

((
f ′a(s)

fa(s)

)2

− f ′′a (s)

fa(s)

)

For dense, symmetric tuning curves, the second term sums to zero.
Using fa(s) = 〈ra〉 we obtain

IF (s) = T
∑

a

(f ′a(s))2

fa(s)

For dense fa(s) = Ae−(s−s0+a.ds)2/2σ2
w with density ρ = 1/ds, sum

becomes integral
IF =

√
2πTAρ/σw
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For Gaussian tuning curves

[Dayan and Abbott (2001)]

Note that Fisher information vanishes at peak as f ′a(s) = 0 there.
Can be used to create optimal tuning curves,
[Dayan and Abbott, 2002] chapter 3.3.
Discriminability d ′ = ∆s

√
IF (s) for a small ∆F .
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FI predicts human performance

[Dayan and Abbott (2001)]

Orientation discrimination for stimuli of different size (different N)
Solid line: estimated minimum standard deviation at the Cramer
Rao bound
Triangles: human standard deviation as function of stimulus size
(expressed in N)
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Slope as strategy

From paper on bat echo location [Yovel et al., 2010] )
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Spike train decoding

Dayan and Abbott §3.4
Estimate the stimulus from spike times ti to minimize e.g.
〈s(t)− sest (t)〉2

First order reconstruction:

sest (t − τ0) =
∑

ti

K (t − ti)− 〈r〉
∫

dτK (τ)

The second term ensures that 〈sest (t)〉 = 0
Delay τ0 can be included to make decoding easier: predict
stimulus at time t − τ0 based on spikes up to time t
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Causal decoding

Organism faces causal (on-line) decoding problem.
Prediction of the current/future stimulus requires temporal
correlation of the stimulus. Example: in head-direction system
neural code correlates best with future direction.
Requires K (t − ti) = 0 for t ≤ ti .

sest (t − τ0) =
∑

ti

K (t − ti)− 〈r〉
∫

dτK (τ)

Delay τ0 buys extra time
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Causal decoding

Delay τ0 = 160 ms. (B: shifted/causal kernel, C: non-causal kernel)
At time t estimate s(t − τ0):
Spikes 1..4: contribute because stimulus is correlated (right tail of K)
Spikes 5..7: contribute because of τ0
Spikes 8, 9,... : have not occurred yet. Stimulus uncorrelated: Kernel
from STA [Dayan and Abbott (2001)]
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Decoding from a GLM
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H1 neuron of
the fly
Solid line is
reconstruction
using acausal
filter
Note,
reconstruction
quality will
depend on
stimulus

[Dayan and Abbott (2001) after Rieke et al (1997)]
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MAP estimation

According to Bayes theorem

p(s|r) = p(r |s)p(s)/p(r)

log p(s|r) = log p(r |s) + log p(s) + c

Tractable as long as rhs. is concave, which excludes heavy tailed p(s).
Requires to compute:

ŝ = argmaxs log p(s|r)

This is numerically hard, see [Pillow et al., 2011] for methods.
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MAP decoding simulation

[Pillow et al., 2011]
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Conclusion stimulus reconstruction

Stimulus reconstruction similar to encoding problem. But
Response is given, can not be choosen to be white
Imposing causality adds realism but reduces quality

The reconstruction problem can be ill-posed. It is not always
possible to reconstruct stimulus (cf dictionary). For instance:
complex cell.
Still, the cell provides information about the stimulus. Could try to
read the code, rather than reconstruct the stimulus (e.g. ideal
observer)
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Readout of Object Identity from Macaque IT Cortex

[Hung et al., 2005]
Recording from ∼ 300 sites in the Inferior Temporal (IT) cortex
Present images of 77 stimuli (of different objects) at various
locations and scales in the visual field.
Task is to categorize objects into 8 classes, or identify all 77
objects
Predictions based on one-vs-rest linear SVM classifiers, using
data in 50 ms bins from 100 ms to 300 ms after stimulus onset
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[Hung et al., 2005]
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What does this tell us?

Performance of classifiers can provide a lower bound on the
information available in the population activity.
Assuming independence, correlations are ignored. Correlation
could limit or enhance information.
Distributed representation
Linear classifier can plausibly be implemented in neural hardware
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4. Population Encoding

Dayan and Abbott §3.3
Population encoding uses a large number of neurons to represent
information
Advantage 1: reduction of uncertainty due to neuronal variability
(Improves reaction time).
Advantage 2: Ability to represent a number of different stimulus
attributes simultaneously (e.g. in V1 location and orientation).
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Population codes and correlations: Retina

Fit coupled GLM-model (see encoding) to retina data

[Pillow et al., 2008]
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Population codes and correlations: Retina

[Pillow et al., 2008]
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Hippocampal Place Cell Decoding

[Brown et al., 1998]
Encoding in place cells: modelled as inhomogeneous Poisson
processes with Gaussian receptive fields (incl. theta oscillations),
assuming independence
Encoding as path: random walk
Bayesian filter decoding: compute posterior and then update
estimate in next time step using information from spikes (combine
prior and new information).
Non-Bayesian decoding: compute estimate in time steps given
spikes in time window (only current information).
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[Brown et al., 1998]

Bayes, maximum likelihood, linear kernel and correlation based.
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Example: Motor decoding

[Shpigelman et al., 2005]

Rhesus monkey, 43 electrodes in M1
Monkey controls cursors on a screen using two manipulanda to
perform a centre-out reaching task
Predict hand velocity based on 10 time bins, each of length 100
ms in all 43 neurons.
Can use linear regression, polynomial regression, Gaussian
kernel (support vector regression), spikernel (allows time warping)
More sophisticated methods outperform linear regression, but
linear is already decent

State-of-the-art w. Kalman filters [Gilja et al., 2012]
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[Shpigelman et al., 2005]
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Decoding from your brain

[Miyawaki et al., 2008]

fMRI, linear decoder from voxel activations.
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Summary

Discrimination between stimuli (or actions) using just recorded
spikes is possible and tractable.
Full reconstruction of a stimulus is hard, especially when stimulus
dimensionality is high.
But also unclear to what extent this is this even possible.
Decoding can tell us how much information neural activity carries
about the outside world, it provides an upper bound.
BMI applications are on the horizon.
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