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Where are we?

Last time . . .

! Talked about decision making under uncertainty

! Looked at utility theory

! Discussed axioms of utility theory

! Described different utility functions

! Introduced decision networks

Today . . .

! Markov Decision Processes
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Sequential decision problems

! So far we have only looked at one-shot decisions, but decision
process are often sequential

! Example scenario: a 4x3-grid in which agent moves around (fully
observable) and obtains utility of +1 or -1 in terminal states
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! Actions are somewhat unreliable (in deterministic world, solution
would be trivial)
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Markov decision processes

! To describe such worlds, we can use a (transition) model
T (s, a, s ′) denoting the probability that action a in s will lead to
state s ′

! Model is Markovian: probability of reaching s ′ depends only on s
and not on history of earlier states

! Think of T as big three-dimensional table (actually a DBN)

! Utility function now depends on environment history
! agent receives a reward R(s) in each state s (e.g. -0.04 apart from

terminal states in our example)
! (for now) utility of environment history is the sum of state rewards

! In a sense, stochastic generalisation of search algorithms!
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Markov decision processes

! Definition of a Markov Decision Process (MDP):
Initial state: S0

Transition model: T (s, a, s ′)
Utility function: R(s)

! Solution should describe what agent does in every state

! This is called policy, written as π

! π(s) for an individual state describes which action should be taken
in s

! Optimal policy is one that yields the highest expected utility
(denoted by π∗)
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Example
! Optimal policies in the 4x3-grid environment

(a) With cost of -0.04 per intermediate state π∗ is conservative for
(3,1)

(b) Different cost induces direct run to terminal state/shortcut at
(3,1)/no risk/avoid both exits
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Optimality in sequential decision problems

! MDPs very popular in various disciplines, different algorithms for
finding optimal policies

! Before we present some of them, let us look at utility functions
more closely

! We have used sum of rewards as utility of environment history
until now, but what are the alternatives?

! First question: finite horizon or infinite horizon

! Finite means there is a fixed time N after which nothing matters:

∀k Uh([s0, s1, . . . , sN+k ]) = Uh([s0, s1, . . . , sN ])
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Optimality in sequential decision problems

! This leads to non-stationary optimal policies (N matters)

! With infinite horizon, we get stationary optimal policies (time at
state doesn’t matter)

! We are mainly going to use infinite horizon utility functions

! NOTE: sequences to terminal states can be finite even under
infinite horizon utility calculation

! Second issue: how to calculate utility of sequences
! Stationarity here is reasonable assumption:

s0 = s ′
0 ∧ [s0, s1, s2 . . .] ≻ [s ′

0, s
′
1, s

′
2, . . .]⇒ [s1, s2 . . .] ≻ [s ′

1, s
′
2, . . .]
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Optimality in sequential decision problems

! Stationarity may look harmless, but there are only two ways to
assign utilities to sequences under stationarity assumptions

! Additive rewards:

Uh([s0, s1, s2 . . .]) = R(s0) + R(S1) + R(S2) + . . .

! Discounted rewards (for discount factor 0 ≤ γ ≤ 1)

Uh([s0, s1, s2 . . .]) = R(s0) + γR(S1) + γ2R(S2) + . . .

! Discount factor makes more distant future rewards less significant

! We will mostly use discounted rewards in what follows
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Optimality in sequential decision problems

! Choosing infinite horizon rewards creates a problem

! Some sequences will be infinite with infinite (additive) reward, how
do we compare them?

! Solution 1: with discounted rewards the utility is bounded if
single-state rewards are

Uh([s0, s1, s2 . . .]) =
∞∑

t=0

γtR(st) ≤
∞∑

t=0

γtRmax = Rmax/(1− γ)

! Solution 2: under proper policies, i.e. if agent will eventually visit
terminal state, additive rewards are finite

! Solution 3: compare average reward per time step
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Value iteration

! Value iteration is an algorithm for
calculating optimal policy in MDPs

Calculate the utility of each state and then select optimal action
based on these utilities

! Since discounted rewards seemed to create no problems, we will
use

π∗ = arg max
π

E

[ ∞∑

t=0

γtR(st)|π
]

as a criterion for optimal policy
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Explaining π∗ = arg maxπ E [
∑∞

t=0 γtR(st)|π]
! Each policy π yields a tree, with root node s0, and daughters to a

node s are the possible successor states given the action π(s).
! T (s, a, s ′) gives the probability of traversing an arc from s to

daughter s ′.

s0

s1
1 s2

1

s1,1
2 s1,2

2 s2,1
2 s2,2

2

! E is computed by:
(a) For each path p in the tree, getting the product of the (joint)

probability of the path in this tree with its discounted reward, and
then

(b) Summing over all the products from (a)

! So this is just a generalisation of single shot decision theory.
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Utilities of states: : U(s) ̸= R(s)!

! R(s) is reward for being in s now.

! By making U(s) the utility of the states that might follow it, U(s)
captures long-term advantages from being in s

U(s) reflects what you can do from s;
R(s) does not.

! States that follow depend on π. So utility of s given π is:

Uπ(s) = E

[ ∞∑

t=0

γtR(st)|π, s0 = s

]

! With this, “true” utility U(s) is Uπ∗
(s) (expected sum of

discounted rewards if executing optimal policy)
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Utilities in our example

! U(s) computed for our example from algorithms to come.

! γ = 1, R(s) = −0.04 for nonterminals.
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Utilities of states

! Given U(s), we can easily determine optimal policy:

π∗(s) = arg max
a

∑

s′
T (s, a, s ′)U(s ′)

! Direct relationship between
utility of a state and that of its neighbours:

Utility of a state is immediate reward plus expected utility of
subsequent states if agent chooses optimal action

! This can be written as the famous Bellman equations:

U(s) = R(s) + γ max
a

∑

s′
T (s, a, s ′)U(s ′)
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The value iteration algorithm

! For n states we have n Bellman equations with n unknowns
(utilities of states)

! Value iteration is an iterative approach to solving the n equations.

! Start with arbitrary values and update them as follows:

Ui+1(s)← R(s) + γ max
a

∑

s′
T (s, a, s ′)Ui(s

′)

! The algorithm converges to right and unique solution

! Like propagating values through network or utilities
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The value iteration algorithm

! Value iteration in our example: evolution of utility values of states
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Decision-theoretic agents

! We now have (tediously) gathered all the ingredients to build
decision-theoretic agents

! Transition and observation models will be described by a DBN

! They will be augmented by decision and utility nodes to obtain a
dynamic DN

! Decisions will be made by projecting forward possible action
sequences and choosing the best one

! Practical design for a utility-based agent

Informatics UoE Informatics 2D 231

Introduction
Value iteration

Decision-theoretic agents
Summary

Decision-theoretic agents

! Dynamic decision networks look something like this

! General form of everything we have talked about in uncertainty
part
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Summary

! Sequential decision making

! Defined MDPs to model stochastic multi-step decision making
processes

! Value iteration and policy iteration algorithms

! Design of decision-theoretic utility-based agents based on DDNs

! Completes our account of reasoning under uncertainty
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