Where are we?

Last time . . .

- Time in reasoning about uncertainty
- Markov assumption, stationarity
- Algorithms for reasoning about temporal processes
- Filtering and prediction

Today . . .

- Time and uncertainty II
Smoothing

- Smoothing is computation of distribution of past states given current evidence, i.e. \(P(X_k|e_1:t), 1 \leq k < t \)

\[
P(X_k|e_1:t) = P(X_k|e_1:k, e_{k+1:t})
\]
\[
= \alpha P(X_k|e_1:k)P(e_{k+1:t}|X_k, e_1:k) \quad \text{(Bayes' rule)}
\]
\[
= \alpha P(X_k|e_1:k)P(e_{k+1:t}|X_k) \quad \text{(conditional independence)}
\]
\[
= \alpha f_{1:k} b_{k+1:t}
\]

- Easiest to view as 2-step process (up to \(k \), then \(k + 1 \) to \(t \))

- Here “backward” message is \(b_{k+1:t} = P(e_{k+1:t}|X_k) \) analogous to forward message
Smoothing

- Formula for backward message:

\[
P(e_{k+1:t} | X_k) = \sum_{x_{k+1}} P(e_{k+1} | x_{k+1}) P(e_{k+2:t} | x_{k+1}) P(x_{k+1} | X_k)
\]

- First term is sensor model; third term is transition model; second is ‘recursive call’

- Define \(b_{k+1:t} = \text{BACKWARD}(b_{k+2:t}, e_{k+1:t}) \)

- The backward phase has to be initialised with
 \(b_{t+1:t} = P(e_{t+1:t} | X_t) = 1 \) (a vector of 1s) because probability of observing empty sequence is 1

- As before, all this is quite abstract, back to our example
Umbrella World: Compute $\mathbf{P}(R_1|u_1, u_2)$

We have $\mathbf{P}(R_1|u_1, u_2) = \alpha \mathbf{P}(R_1|u_1)\mathbf{P}(u_2|R_1)$

So we’ll need to remind ourselves of $\mathbf{P}(R_1|u_1)$ from last lecture:

- $\mathbf{P}(R_1) = \sum_{r_0} \mathbf{P}(R_1|r_0)\mathbf{P}(r_0) = \langle 0.7, 0.3 \rangle \times 0.5 + \langle 0.3, 0.7 \rangle \times 0.5 = \langle 0.5, 0.5 \rangle$

- Update with evidence $U_1 = \text{true}$ yields:

 $\mathbf{P}(R_1|u_1) = \alpha \mathbf{P}(u_1|R_1)\mathbf{P}(R_1) = \alpha \langle 0.9, 0.2 \rangle \langle 0.5, 0.5 \rangle \approx \langle 0.818, 0.182 \rangle$
Smoothing Example Continued

\[P(R_1|u_1, u_2) = \alpha P(R_1|u_1)P(u_2|R_1) \]

- Forward filtering process yielded \(\langle 0.818, 0.182 \rangle \) for first term
- The second term can be obtained through backward recursion:

\[
P(u_2|R_1) = \sum_{r_2} P(u_2|r_2)P(r_2|R_1)\]

\[= (0.9 \times 1 \times \langle 0.7, 0.3 \rangle) + (0.2 \times 1 \times \langle 0.3, 0.7 \rangle) = \langle 0.69, 0.41 \rangle\]

- Plugged into the above equation this yields

\[P(R_1|u_1, u_2) = \alpha \langle 0.818, 0.182 \rangle \times \langle 0.69, 0.41 \rangle \approx \langle 0.883, 0.117 \rangle\]

- So our confidence that it rained on Day 1 increases when we see the umbrella on the second day as well as the first.
- A simple improved version of this that stores results runs in linear time (*forward-backward* algorithm)
Finding the most likely sequence

- Suppose \([true, true, false, true, true]\) is the umbrella sequence for first five days, what is the most likely weather sequence that caused it?
- Could use smoothing procedure to find posterior distribution for weather at each step and then use most likely weather at each step to construct sequence
- NO! Smoothing considers distributions over individual time steps, but we must consider joint probabilities over all time steps
- Actual algorithm is based on viewing each sequence as path through a graph (nodes=states at each time step)
Finding the most likely sequence

In umbrella example:

- Look at states with $Rain_5 = true$ (part (a)), Markov property
 - most likely path to this state consists of most likely path to state at time 4 followed by transition to $Rain_5 = true$
 - state at time 4 that will become part of the path is whichever maximises likelihood of the path
Finding the most likely sequence

- There is a recursive relationship between most likely paths to x_{t+1} and most likely paths to each state x_t

$$\max_{x_1 \ldots x_t} P(x_1, \ldots, x_t, X_{t+1}|e_{1:t+1}) = \alpha P(e_t+1|X_{t+1}) \max_{x_t} (P(X_{t+1}|x_t) \max_{x_1 \ldots x_{t-1}} P(x_1, \ldots, x_{t-1}, x_t|e_{1:t}))$$

- This is like filtering only that the forward message is replaced by

$$m_{1:t} = \max_{x_1 \ldots x_{t-1}} P(x_1, \ldots, x_{t-1}, X_t|e_{1:t})$$

- And summation is now replaced by maximisation
Finding the most likely sequence

- This algorithm (Viterbi algorithm) is similar to filtering.
- Runs forward along sequence computing \(m \) message in each step.
- Progress in example shown in part (b) of diagram above.
- In the end it has probability for most likely sequence for reaching each final state.

 Easy to determine overall most likely sequence.

- Has to keep pointers from each state back to the best state that leads to it.
So far, we have seen a general model for temporal probabilistic reasoning (independent of transition/sensor models).

In this and the following lecture we are going to look at more concrete models and applications.

Hidden Markov Models (HMMs): temporal probabilistic model in which state of the process is described by a single variable.

Like our umbrella example (single variable $Rain_t$).

More than one variable can be accommodated, but only by combining them into a single “mega-variable”.

Structure of HMMs allows for a very simple and elegant matrix implementation of basic algorithms.
Summary

- The forward-backward algorithm
- Finding the most likely sequence (Viterbi algorithm)
- Talked about HMMs
- HMMs: single state variable, simplifies algorithms (see other courses for these)
- Huge significance, for example in speech recognition:

\[P(\text{words}|\text{signal}) = \alpha P(\text{signal}|\text{words})P(\text{words}) \]

- Vast array of applications, but also limits.
- Next time: Dynamic Bayesian Networks