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Where are we?

Last time . . .

! Time in reasoning about uncertainty

! Markov assumption, stationarity

! Algorithms for reasoning about temporal processes

! Filtering and prediction

Today . . .

! Time and uncertainty II
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Smoothing
! Smoothing is computation of distribution of past states given

current evidence, i.e. P(Xk |e1:t), 1 ≤ k < t

X1

E1

X0 Xk

Ek

Xt

Et

! Easiest to view as 2-step process (up to k , then k + 1 to t)

P(Xk |e1:t) = P(Xk |e1:k , ek+1:t)

= αP(Xk |e1:k)P(ek+1:t |Xk , e1:k ) (Bayes’ rule)

= αP(Xk |e1:k)P(ek+1:t |Xk) (conditional independence)

= αf1:kbk+1:t

! Here “backward” message is bk+1:t = P(ek+1:t |Xk) analogous to
forward message
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Smoothing

! Formula for backward message:

P(ek+1:t |Xk) =
∑

xk+1

P(ek+1|xk+1)P(ek+2:t |xk+1)P(xk+1|Xk)

! First term is sensor model; third term is transition model; second
is ‘recursive call’

! Define bk+1:t = Backward(bk+2:t , ek+1:t)

! The backward phase has to be initialised with
bt+1:t = P(et+1:t |Xt) = 1 (a vector of 1s) because probability of
observing empty sequence is 1

! As before, all this is quite abstract, back to our example
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Umbrella World: Compute P(R1|u1, u2)

tRain

tUmbrella

Raint–1

Umbrellat–1

Raint+1

Umbrellat+1

Rt -1 tP(R )

0.3f
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tR tP(U  )
0.9t
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We have P(R1|u1, u2) = αP(R1|u1)P(u2|R1)
So we’ll need to remind ourselves of P(R1|u1) from last lecture:

! P(R1) =
∑

r0
P(R1|r0)P(r0) = ⟨0.7, 0.3⟩×0.5+⟨0.3, 0.7⟩×0.5 = ⟨0.5, 0.5⟩

! Update with evidence U1 = true yields:

P(R1|u1) = αP(u1|R1)P(R1) = α⟨0.9, 0.2⟩⟨0.5, 0.5⟩ ≈ ⟨0.818, 0.182⟩
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Smoothing Example Continued
P(R1|u1, u2) = αP(R1|u1)P(u2|R1)
! Forward filtering process yielded ⟨0.818, 0.182⟩ for first term
! The second term can be obtained through backward recursion:

P(u2|R1) =
∑

r2

P(u2|r2)P(|r2)P(r2|R1)

= (0.9× 1× ⟨0.7, 0.3⟩) + (0.2× 1× ⟨0.3, 0.7⟩) = ⟨0.69, 0.41⟩

! Plugged into the above equation this yields

P(R1|u1, u2) = α⟨0.818, 0.182⟩ × ⟨0.69, 0.41⟩ ≈ ⟨0.883, 0.117⟩

! So our confidence that it rained on Day 1 increases when we see
the umbrella on the second day as well as the first.

! A simple improved version of this that stores results runs in linear
time (forward-backward algorithm)
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Finding the most likely sequence

! Suppose [true, true, false, true, true] is the umbrella sequence for
first five days, what is the most likely weather sequence that
caused it?

! Could use smoothing procedure to find posterior distribution for
weather at each step and then use most likely weather at each
step to construct sequence

! NO! Smoothing considers distributions over individual time steps,
but we must consider joint probabilities over all time steps

! Actual algorithm is based on viewing each sequence as path
through a graph (nodes=states at each time step)
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Finding the most likely sequence
! In umbrella example:
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! Look at states with Rain5 = true (part (a)), Markov property
! most likely path to this state consists of most likely path to state at

time 4 followed by transition to Rain5 = true
! state at time 4 that will become part of the path is whichever

maximises likelihood of the path
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Finding the most likely sequence

! There is a recursive relationship between most likely paths to xt+1
and most likely paths to each state xt

maxx1...xtP(x1, . . . , xt ,Xt+1|e1:t+1)

= αP(et+1|Xt+1)max
xt

(P(Xt+1|xt) max
x1...xt−1

P(x1, . . . , xt−1, xt |e1:t ))

! This is like filtering only that the forward message is replaced by

m1:t = max
x1...xt−1

P(x1, . . . , xt−1,Xt |e1:t)

! And summation is now replaced by maximisation
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Finding the most likely sequence

! This algorithm (Viterbi algorithm) is similar to filtering

! Runs forward along sequence computing m message in each step

! Progress in example shown in part (b) of diagram above

! In the end it has probability for most likely sequence for reaching
each final state
Easy to determine overall most likely sequence

! Has to keep pointers from each state back to the best state that
leads to it
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Hidden Markov Models

! So far, we have seen a general model for temporal probabilistic
reasoning (independent of transition/sensor models)

! In this and the following lecture we are going to look at more
concrete models and applications

! Hidden Markov Models (HMMs): temporal probabilistic model
in which state of the process is described by a single variable

! Like our umbrella example (single variable Raint)

! More than one variable can be accommodated, but only by
combining them into a single “mega-variable”

! Structure of HMMs allows for a very simple and elegant matrix
implementation of basic algorithms
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Summary

! The forward-backward algorithm

! Finding the most likely sequence (Viterbi algorithm)

! Talked about HMMs

! HMMs: single state variable, simplifies algorithms (see other
courses for these)

! Huge significance, for example in speech recognition:

P(words|signal) = αP(signal |words)P(words)

! Vast array of applications, but also limits.

! Next time: Dynamic Bayesian Networks
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