Tutorial 1: Simple recommender system and clustering

1. (a) Euclidean distances:

<table>
<thead>
<tr>
<th></th>
<th>Guardian</th>
<th>Times</th>
<th>Telegraph</th>
<th>Independent</th>
<th>Steve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guardian</td>
<td>$\sqrt{23}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Times</td>
<td>$\sqrt{13}$</td>
<td>$\sqrt{6}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telegraph</td>
<td>$\sqrt{41}$</td>
<td>$\sqrt{8}$</td>
<td>$\sqrt{10}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent</td>
<td>$\sqrt{12}$</td>
<td>$\sqrt{5}$</td>
<td>$\sqrt{17}$</td>
<td>$\sqrt{7}$</td>
<td></td>
</tr>
</tbody>
</table>

Closest pair: Independent/Times
Furthest pair: Guardian/Telegraph
Closest to Steve: Times

(b) We can use the following to convert the Euclidean distance (a measure of dissimilarity) to a measure of similarity:

$$\text{sim}(x, y) = \frac{1}{1 + r^2(x, y)}.$$

This ad hoc measure of similarity is just one possible choice. The good points are that distance of 0 has similarity 1, and distance of infinity has similarity 0. Bad points are that it is does not normalize for mean or variance (i.e., does not take account of a critic who gives consistently higher ratings). Another possible measure, that has been used in practice, is the Pearson correlation.

We can use the similarity to estimate the score $sc_u(z)$ for item z for a new user u, by summing over the set of C critics:

$$sc_u(z) = \frac{1}{\sum_{c=1}^{C} \text{sim}(x_u, x_c)} \sum_{c=1}^{C} \text{sim}(x_u, x_c) \cdot sc_c(z).$$

Putting all the things we need to compute in a table:

<table>
<thead>
<tr>
<th></th>
<th>Guardian</th>
<th>Times</th>
<th>Telegraph</th>
<th>Independent</th>
<th>Steve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Goes First</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Similarity</td>
<td>Score</td>
<td>Sim.Score</td>
<td>Score</td>
<td>Sim.Score</td>
<td>Score</td>
</tr>
<tr>
<td>Guardian</td>
<td>0.17</td>
<td>6</td>
<td>1.02</td>
<td>2</td>
<td>0.34</td>
</tr>
<tr>
<td>Times</td>
<td>0.29</td>
<td>6</td>
<td>1.74</td>
<td>6</td>
<td>1.74</td>
</tr>
<tr>
<td>Telegraph</td>
<td>0.24</td>
<td>6</td>
<td>1.44</td>
<td>2</td>
<td>0.48</td>
</tr>
<tr>
<td>Independent</td>
<td>0.27</td>
<td>3</td>
<td>0.81</td>
<td>3</td>
<td>0.81</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est. Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.97</td>
<td>5.01</td>
<td>3.37</td>
<td>6.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.16</td>
<td>3.47</td>
<td>6.99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So the recommendation would be *Three Women* with an estimated rating of about 7.

(c) Distance from Che:
Slumdog Millionaire $\sqrt{36} = 6$
Sex Drive $\sqrt{12} \approx 3.5$
The Reader $\sqrt{30} \approx 5.5$

So on this limited recommender system, *Sex Drive* would be recommended as the closest to *Che*. Is this a good recommendation? You might like to discuss the limitations of the system in the light of this recommendation: limited number of movies; limited number of raters; only taking into account ratings (not genre, etc.)

(d) To get a feel for correlations plot a couple on the board: try Independent vs Telegraph and Independent vs Guardian. Although Independent has a smaller Euclidean distance to Guardian than to Telegraph, it is better correlated with Telegraph than Guardian. One reason for this is that Telegraph has a much higher mean score (6.5) than Independent (4.75).
To compute the Pearson correlation coefficient:

$$\rho_{xy} = \frac{1}{N - 1} \sum_{n=1}^{N} \frac{(x_n - \bar{x})}{s_x} \frac{(y_n - \bar{y})}{s_y},$$

where m_x and m_y are the sample means and s_x and s_y are the sample standard deviations:

$$\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n \quad (1)$$

$$s_x = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} (x_n - \bar{x})^2}. \quad (2)$$

It’s a little bit tedious to do this by hand, better to write a small program to do it (or to use a library call in Matlab or R). There are ways to compute the sd more efficiently, you might like to discuss better ways to do it.
Simple python function to compute Pearson correlation

def corr(x,y):
 nx = len(x)
 ny = len(y)
 if nx != ny:
 return 0
 if nx == 0:
 return 0
 N = float(nx)
 # compute mean of each vector
 meanx = sum(x) / N
 meany = sum(y) / N

 # compute standard deviation of each vector
 sdx = math.sqrt(sum([(a-meanx)*(a-meanx) for a in x])/(N-1))
 sdy = math.sqrt(sum([(a-meany)*(a-meany) for a in y])/(N-1))

 # normalise vector elements to zero mean and unit variance
 normx = [(a-meanx)/sdx for a in x]
 normy = [(a-meany)/sdy for a in y]

 # return the Pearson correlation coefficient
 return sum([normx[i]*normy[i] for i in range(nx)])/(N-1)

The computed correlations are given below:

<table>
<thead>
<tr>
<th></th>
<th>Guardian</th>
<th>Times</th>
<th>Telegraph</th>
<th>Independent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guardian</td>
<td>1</td>
<td>0.77</td>
<td>0.42</td>
<td>0.65</td>
</tr>
<tr>
<td>Times</td>
<td>0.77</td>
<td>1</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>Telegraph</td>
<td>0.42</td>
<td>0.90</td>
<td>1</td>
<td>0.87</td>
</tr>
<tr>
<td>Independent</td>
<td>0.65</td>
<td>0.90</td>
<td>0.87</td>
<td>1</td>
</tr>
</tbody>
</table>

The largest correlations (similarities) are between Telegraph and Times, and between Independent and Times.

Optional discussion:

In the above expression for the sample correlation coefficient, we use an unbiased estimator for the variance (which is still biased for the standard deviation): divide by \((N-1)\) rather than by \(N\):

\[
s^2_{N-1} = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - m)^2.
\]

You might like to discuss this expression, informally. The following, taken from David MacKay’s book *Information Theory, Inference, and Learning Algorithms* (see http://www.inference.phy.cam.ac.uk/mackay/itila/book.html), gives an intuitive explanation for why \(s^2_{N-1}\) gives an under-estimate of the true variance. Let the true mean be represented by \(\mu\) and the true variance be represented by \(\sigma^2\):
i. The data points that we observe come from a distribution centred on the true mean μ, with dispersion σ^2.

ii. The sample mean m is in unlikely to equal the true mean (particularly if the sample size is small).

iii. The sample mean is that point m which minimizes the sum of squared deviations of the data points from m.

iv. Any other value for the sample mean (including μ) will have a larger value of the sum-squared deviation than m.

v. Since the sample variance is estimated as the average sum-squared deviation from the sample mean, s^2 will be smaller than the average sum-squared deviation from the true mean.

2. (a) For simplicity’s sake, we can assume that the samples are normalised in advance so that $\bar{x} = \bar{y} = 0$.

$$s_x = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} x_n^2}, \quad s_y = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} y_n^2}$$

$$r = \frac{1}{N-1} \sum_{n=1}^{N} \frac{x_n y_n}{s_x s_y} = \frac{1}{N-1} \frac{1}{s_x s_y} \sum_{n=1}^{N} x_n y_n = \frac{1}{\sqrt{\sum_{n=1}^{N} x_n^2} \sqrt{\sum_{n=1}^{N} y_n^2}} \sum_{n=1}^{N} x_n y_n$$

$$= \frac{x \cdot y}{\|x\| \|y\|} = \cos \theta$$

where $x \cdot y$ is the dot product between x and y, and $x \cdot y = \|x\| \|y\| \cos \theta$, where θ is the angle between the two vectors. Thus, $-1 \leq r \leq 1$.

(b) Good examples can be found in the Wikipedia’s page: http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

3. Best to do this by plotting points on a graph.

<table>
<thead>
<tr>
<th>Iter 1: Centroids</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 1)</td>
<td>(1, 1), (4, 4), (5, 1), (7, 1)</td>
</tr>
<tr>
<td>(7, 10)</td>
<td>(7, 4), (7, 10)</td>
</tr>
</tbody>
</table>

Cluster centres re-estimated to (17/4, 7/4) and (7, 7)

<table>
<thead>
<tr>
<th>Iter 2: Centroids</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>(17/4, 7/4)</td>
<td>(1, 1), (4, 4), (5, 1), (7, 1)</td>
</tr>
<tr>
<td>(7, 7)</td>
<td>(7, 4), (7, 10)</td>
</tr>
</tbody>
</table>

Iter 3 does not change the centres. Converged.

4. (a) See Figure 4(a) below. Boundary between x_1 and x_2 is the midline (perpendicular bisector) between (0, 0) and (0, 4), which is $y = 2$.

Boundary between x_1 and x_3 is the midline between (0, 0) and (2, 2), which is $y = -x + 2$.

Boundary between x_2 and x_1 is the midline between (0, 4) and (2, 2), which is $y = x + 2$.

These intersect at (0, 2) and the boundaries are given by:

- $y = 2$ when $x < 0$
• \(y = -x + 2 \) when \(x > 0 \)
• \(y = x + 2 \) when \(x > 0 \)

The key points for the sketch in Figure 4(a) are that there is an intersection at \((0, 2)\) and the space is divided into 3 regions.

(b) See Figure 4 (b)
(c) See Figure 4 (c), where \(C_1 \) region is shown in red, \(C_2 \) region in blue, and \(C_3 \) region in green.