Tutorial 1: Simple recommender system and clustering

	Guardian	Times	Telegraph	Independent	Steve
Guardian					$\sqrt{23}$
Times	$\sqrt{13}$				$\sqrt{6}$
Telegraph	$\sqrt{41}$	$\sqrt{8}$			$\sqrt{10}$
Independent	$\sqrt{12}$	$\sqrt{5}$	$\sqrt{17}$		$\sqrt{7}$

Closest pair: Independent/Times Furthest pair: Guardian/Telegraph Closest to Steve: Times

(b) We can use the following to convert the Euclidean distance (a measure of dissimilarity) to a measure of similarity:

$$\operatorname{sim}(\mathbf{x}, \mathbf{y}) = \frac{1}{1 + r_2(\mathbf{x}, \mathbf{y})}$$

This ad hoc measure of similarity is just one possible choice. The good points are that distance of 0 has similarity 1, and distance of infinity has similarity 0. Bad points are that it is does not normalize for mean or variance (i.e., does not take account of a critic who gives consistently higher ratings). Another possible measure, that has been used in practice, is the Pearson correlation.

We can use the similarity to estimate the score $sc_u(z)$ for item z for a new user u, by summing over the set of C critics:

$$\mathrm{sc}_u(z) = \frac{1}{\sum_{c=1}^C \mathrm{sim}(\mathbf{x}_u, \mathbf{x}_c)} \sum_{c=1}^C \mathrm{sim}(\mathbf{x}_u, \mathbf{x}_c) \cdot \mathrm{sc}_c(z) \,.$$

		Mary Goes First		Well		Three Women	
	Similarity	Score	Sim.Score	Score	Sim.Score	Score	Sim.Score
Guardian	0.17	6	1.02	2	0.34	4	0.68
Times	0.29	6	1.74	6	1.74	8	2.32
Telegraph	0.24	6	1.44	2	0.48	9	2.16
Independent	0.27	3	0.81	3	0.81	6	1.62
Sum	0.97		5.01		3.37		6.78
Est. Score			5.16		3.47		6.99

Putting all the things we need to compute in a table:

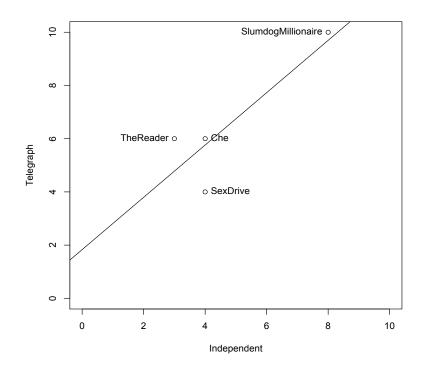
So the recommendation would be *Three Women* with an estimated rating of about 7.

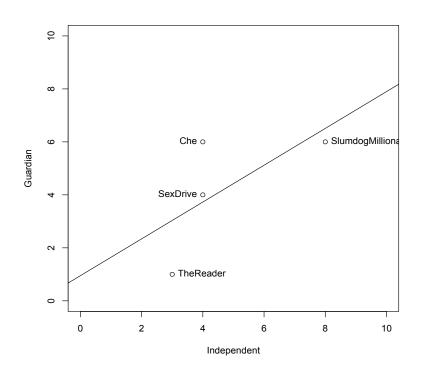
(c) Distance from *Che*:

Slumdog Millionaire	$\sqrt{36} = 6$
Sex Drive	$\sqrt{12} \approx 3.5$
The Reader	$\sqrt{30} \approx 5.5$

So on this limited recommender system, *Sex Drive* would be recommended as the closest to *Che*. Is this a good recommendation? You might like to discuss the limitations of the system in the light of this recommendation: limited number of movies; limited number of raters; only taking into account ratings (not genre, etc.)

(d) To get a feel for correlations plot a couple on the board: try Independent vs Telegraph and Independent vs Guardian. Although Independent has a smaller Euclidean distance to Guardian than to Telegraph, it is better correlated with Telegraph than Guardian. One reason for this is that Telegraph has a much higher mean score (6.5) than Independent (4.75).





To compute the Pearson correlation coefficient:

$$\rho_{xy} = \frac{1}{N-1} \sum_{n=1}^{N} \frac{(x_n - \bar{x})}{s_x} \cdot \frac{(y_n - \bar{y})}{s_y},$$

where m_x and m_y are the sample means and s_x and s_y are the sample standard deviations:

$$\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n \tag{1}$$

$$s_x = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} (x_n - \bar{x})^2}.$$
 (2)

It's a little bit tedious to do this by hand, better to write a small program to do it (or to use a library call in Matlab or R). There are ways to compute the sd more efficiently, you might like to discuss better ways to do it.

```
# Simple python function to compute Pearson correlation
def corr(x,y):
 nx = len(x)
 ny = len(y)
 if nx != ny:
     return 0
 if nx == 0:
     return 0
 N = float(nx)
 # compute mean of each vector
 meanx = sum(x) / N
 meany = sum(y) / N
 # compute standard deviation of each vector
 sdx = math.sqrt(sum([(a-meanx)*(a-meanx) for a in x])/(N-1) )
 sdy = math.sqrt(sum([(a-meany)*(a-meany) for a in y])/(N-1) )
 # normalise vector elements to zero mean and unit variance
 normx = [(a-meanx)/sdx for a in x]
 normy = [(a-meany)/sdy for a in y]
 # return the Pearson correlation coefficient
 return sum([normx[i]*normy[i] for i in range(nx)])/(N-1)
```

The computed correlations are given below:

	Guardian	Times	Telegraph	Independent
Guardian	1	0.77	0.42	0.65
Times	0.77	1	0.90	0.90
Telegraph	0.42	0.90	1	0.87
Independent	0.65	0.90	0.87	1

The largest correlations (similarities) are between Telegraph and Times, and between Independent and Times.

Optional discussion:

In the above expression for the sample correlation coefficient, we use an unbiased estimator for the variance (which is still biased for the standard deviation): divide by (N-1) rather than by N:

$$s_{N-1}^2 = \frac{1}{N-1} \sum_{n=1}^N (x_n - m)^2.$$

You might like to discuss this expression, informally. The following, taken from David MacKay's book *Information Theory, Inference, and Learning Algorithms* (see http://www.inference.phy.cam.ac.uk/mackay/itila/book.html), gives an intuitive explanation for why s_N^2 gives an under-estimate of the true variance. Let the true mean be represented by μ and the true variance be represented by σ^2 :

- i. The data points that we observe come from a distribution centred on the true mean μ , with dispersion σ^2 .
- ii. The sample mean *m* is in unlikely to equal the true mean (particularly if the sample size is small).
- iii. The sample mean is that point m which minimizes the sum of squared deviations of the data points from m.
- iv. Any other value for the sample mean (including μ) will have a larger value of the sum-squared deviation than *m*.
- v. Since the sample variance is estimated as the average sum-squared deviation from the sample mean, s_N^2 will be smaller than the average sum-squared deviation from the true mean.
- 2. (a) For simplicity's sake, we can assume that the samples are normalised in advance so that $\bar{x} = \bar{y} = 0$.

$$s_{x} = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} x_{n}^{2}}, \quad s_{y} = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} y_{n}^{2}}$$
$$r = \frac{1}{N-1} \sum_{n=1}^{N} \frac{x_{n} y_{n}}{s_{x} s_{y}} = \frac{1}{N-1} \frac{1}{s_{x} s_{y}} \sum_{n=1}^{N} x_{n} y_{n} = \frac{1}{\sqrt{\sum_{n=1}^{N} x_{n}^{2}} \sqrt{\sum_{n=1}^{N} y_{n}^{2}}} \sum_{n=1}^{N} x_{n} y_{n}$$
$$= \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \cos \theta$$

where $\mathbf{x} \cdot \mathbf{y}$ is the dot product between \mathbf{x} and \mathbf{y} , and $\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$, where θ is the angle between the two vectors. Thus, $-1 \le r \le 1$.

- (b) Good examples can be found in the Wikipedia's page: http://en.wikipedia.org/ wiki/Pearson_product-moment_correlation_coefficient
- 3. Best to do this by plotting points on a graph.
 - Iter 1:

Centroids	Points			
(1,1)	(1,1),	(4, 4),	(5, 1),	(7,1)
(7,10)	(7,4),	(7, 10)		

Cluster centres re-estimated to (17/4, 7/4) and (7, 7)

Iter 2:

Centroids	Points			
(17/4,7/4)	(1, 1),	(4, 4),	(5, 1),	(7,1)
	(7,4),			

Iter 3 does not change the centres. Converged.

4. (a) See Figure 4(a) below. Boundary between \mathbf{x}_1 and \mathbf{x}_2 is the midline (perpendicular bisector) between (0, 0) and (0, 4), which is y = 2.

Boundary between \mathbf{x}_1 and \mathbf{x}_3 is the midline between (0, 0) and (2, 2), which is y = -x + 2. Boundary between \mathbf{x}_2 and \mathbf{x}_3 is the midline between (0, 4) and (2, 2), which is y = x + 2. These intersect at (0, 2) and the boundaries are given by:

• y = 2 when x < 0

- y = -x + 2 when x > 0
- y = x + 2 when x > 0

The key points for the sketch in Figure 4(a) are that there is an intersection at (0, 2) and the space is divided into 3 regions.

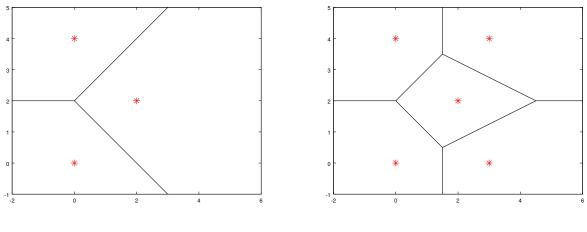


Figure 4 (b)

- (b) See Figure 4 (b)
- (c) See Figure 4 (c), where C_1 region is shown in red, C_2 region in blue, and C_3 region in green.

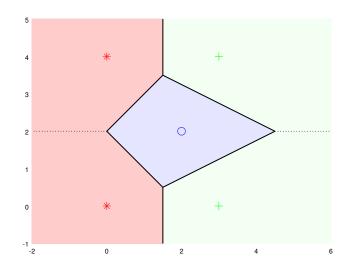


Figure 4 (c)