
Tutorial 1 – Solutions Informatics 2B - Learning (HS v1.1)

Tutorial 1: Simple recommender system and clustering

1. (a) Euclidean distances:
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Closest pair: Independent/Times
Furthest pair: Guardian/Telegraph
Closest to Steve: Times

(b) We can use the following to convert the Euclidean distance (a measure of dissimilarity) to
a measure of similarity:

sim(x, y) =
1

1 + r2(x, y)
.

This ad hoc measure of similarity is just one possible choice. The good points are that
distance of 0 has similarity 1, and distance of infinity has similarity 0. Bad points are that it
is does not normalize for mean or variance (i.e., does not take account of a critic who gives
consistently higher ratings). Another possible measure, that has been used in practice, is
the Pearson correlation.
We can use the similarity to estimate the score scu(z) for item z for a new user u, by
summing over the set of C critics:

scu(z) =
1∑C

c=1 sim(xu, xc)

C∑
c=1

sim(xu, xc) · scc(z) .

Putting all the things we need to compute in a table:

Mary Goes First Well Three Women
Similarity Score Sim.Score Score Sim.Score Score Sim.Score

Guardian 0.17 6 1.02 2 0.34 4 0.68
Times 0.29 6 1.74 6 1.74 8 2.32

Telegraph 0.24 6 1.44 2 0.48 9 2.16
Independent 0.27 3 0.81 3 0.81 6 1.62

Sum 0.97 5.01 3.37 6.78
Est. Score 5.16 3.47 6.99

So the recommendation would be Three Women with an estimated rating of about 7.

(c) Distance from Che:
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Slumdog Millionaire
√

36 = 6
Sex Drive

√
12 ≈ 3.5

The Reader
√

30 ≈ 5.5

So on this limited recommender system, Sex Drive would be recommended as the closest
to Che. Is this a good recommendation? You might like to discuss the limitations of the
system in the light of this recommendation: limited number of movies; limited number of
raters; only taking into account ratings (not genre, etc.)

(d) To get a feel for correlations plot a couple on the board: try Independent vs Telegraph
and Independent vs Guardian. Although Independent has a smaller Euclidean distance to
Guardian than to Telegraph, it is better correlated with Telegraph than Guardian. One reason
for this is that Telegraph has a much higher mean score (6.5) than Independent (4.75).
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To compute the Pearson correlation coefficient:

ρxy =
1

N − 1

N∑
n=1

(xn − x̄)
sx

·
(yn − ȳ)

sy
,

where mx and my are the sample means and sx and sy are the sample standard deviations:

x̄ =
1
N

N∑
n=1

xn (1)

sx =

√√
1

N − 1

N∑
n=1

(xn − x̄)2 . (2)

It’s a little bit tedious to do this by hand, better to write a small program to do it (or to use
a library call in Matlab or R). There are ways to compute the sd more efficiently, you might
like to discuss better ways to do it.
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# Simple python function to compute Pearson correlation

def corr(x,y):

nx = len(x)

ny = len(y)

if nx != ny:

return 0

if nx == 0:

return 0

N = float(nx)

# compute mean of each vector

meanx = sum(x) / N

meany = sum(y) / N

# compute standard deviation of each vector

sdx = math.sqrt(sum([(a-meanx)*(a-meanx) for a in x])/(N-1) )

sdy = math.sqrt(sum([(a-meany)*(a-meany) for a in y])/(N-1) )

# normalise vector elements to zero mean and unit variance

normx = [(a-meanx)/sdx for a in x]

normy = [(a-meany)/sdy for a in y]

# return the Pearson correlation coefficient

return sum([normx[i]*normy[i] for i in range(nx)])/(N-1)

The computed correlations are given below:

Guardian Times Telegraph Independent

Guardian 1 0.77 0.42 0.65
Times 0.77 1 0.90 0.90

Telegraph 0.42 0.90 1 0.87
Independent 0.65 0.90 0.87 1

The largest correlations (similarities) are between Telegraph and Times, and between
Independent and Times.

Optional discussion:
In the above expression for the sample correlation coefficient, we use an unbiased estimator
for the variance (which is still biased for the standard deviation): divide by (N−1) rather
than by N:

s2
N−1 =

1
N − 1

N∑
n=1

(xn − m)2 .

You might like to discuss this expression, informally. The following, taken from David
MacKay’s book Information Theory, Inference, and Learning Algorithms (see http://
www.inference.phy.cam.ac.uk/mackay/itila/book.html), gives an intuitive ex-
planation for why s2

N gives an under-estimate of the true variance. Let the true mean be
represented by µ and the true variance be represented by σ2:

http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
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i. The data points that we observe come from a distribution centred on the true mean µ,
with dispersion σ2.

ii. The sample mean m is in unlikely to equal the true mean (particularly if the sample
size is small).

iii. The sample mean is that point m which minimizes the sum of squared deviations of
the data points from m.

iv. Any other value for the sample mean (including µ) will have a larger value of the
sum-squared deviation than m.

v. Since the sample variance is estimated as the average sum-squared deviation from the
sample mean, s2

N will be smaller than the average sum-squared deviation from the true
mean.

2. (a) For simplicity’s sake, we can assume that the samples are normalised in advance so that
x̄ = ȳ = 0.

sx =

√√
1

N−1

N∑
n=1

x2
n, sy =

√√
1

N−1

N∑
n=1

y2
n

r =
1

N−1

N∑
n=1

xn

sx

yn

sy
=

1
N−1

1
sxsy

N∑
n=1

xnyn =
1√∑N

n=1 x2
n

√∑N
n=1 y2

n

N∑
n=1

xnyn

=
x · y
‖x‖ ‖y‖

= cos θ

where x · y is the dot product between x and y, and x · y = ‖x‖ ‖y‖ cos θ, where θ is the
angle between the two vectors. Thus, −1 ≤ r ≤ 1.

(b) Good examples can be found in the Wikipedia’s page: http://en.wikipedia.org/
wiki/Pearson_product-moment_correlation_coefficient

3. Best to do this by plotting points on a graph.

Iter 1:
Centroids Points

(1, 1) (1, 1), (4, 4), (5, 1), (7, 1)
(7, 10) (7, 4), (7, 10)

Cluster centres re-estimated to (17/4, 7/4) and (7, 7)

Iter 2:
Centroids Points

(17/4, 7/4) (1, 1), (4, 4), (5, 1), (7, 1)
(7, 7) (7, 4), (7, 10)

Iter 3 does not change the centres. Converged.

4. (a) See Figure 4(a) below. Boundary between x1 and x2 is the midline (perpendicular bisector)
between (0, 0) and (0, 4), which is y = 2.
Boundary between x1 and x3 is the midline between (0, 0) and (2, 2), which is y = −x + 2.
Boundary between x2 and x3 is the midline between (0, 4) and (2, 2), which is y = x + 2.
These intersect at (0, 2) and the boundaries are given by:
• y = 2 when x < 0

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
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• y = −x + 2 when x > 0
• y = x + 2 when x > 0

The key points for the sketch in Figure 4(a) are that there is an intersection at (0, 2) and the
space is divided into 3 regions.
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Figure 4 (a) Figure 4 (b)

(b) See Figure 4 (b)

(c) See Figure 4 (c), where C1 region is shown in red, C2 region in blue, and C3 region in
green.
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Figure 4 (c)


