Tutorial 8: Classification with Gaussians

1. Consider a pattern recognition problem with two classes A and B. Each class is modelled by a class-conditional Gaussian density. Class A is parameterised by mean $\mu_A = 4$ and variance $\sigma^2_A = 1$; class B is parameterised by mean $\mu_B = 2$ and variance $\sigma^2_B = 4$.

 (a) On the same graph sketch the probability density function for each class.
 (b) The following three test items are observed:

 \[
 x_1 = 3 \\
 x_2 = 4 \\
 x_3 = 8
 \]

 Assume that the classes have equal prior probabilities. To which classes should these points be assigned?

 (c) You are told that the prior probability of class B is twice that of class A. To which classes would you now assign points x_1, x_2, x_3?

 (d) What are the benefits and drawbacks of using Gaussian probability density functions as a generative model for real world pattern recognition problems?

2. In a two-class pattern classification problem, with classes A and B, each class is modelled using a one-dimensional Gaussian probability density function:

 \[
 p(x|A) = \mathcal{N}(x; \mu_A, \sigma^2_A) \\
 p(x|B) = \mathcal{N}(x; \mu_B, \sigma^2_B)
 \]

 Assume the classes have equal prior probabilities, and that $\mu_A \neq \mu_B$ and $\sigma^2_A \neq \sigma^2_B$.

 (a) Write down a suitable discriminant function for this problem.
 (b) Derive the quadratic equation in x that defines the decision boundary between the classes.

3. The notes stated without proof that the sample mean (μ_{ML}) and sample variance (σ^2_{ML}) are the maximum likelihood solutions for the parameters of a one-dimensional Gaussian. Consider the log likelihood of a Gaussian with mean μ and variance σ^2, given a set of N data points $\{x_1, \ldots, x_N\}$:

 \[
 L = \ln p(\{x_1, \ldots, x_N\}|\mu, \sigma^2) = -\frac{1}{2} \sum_{n=1}^{N} \left(\frac{(x_n - \mu)^2}{\sigma^2} - \ln \sigma^2 - \ln(2\pi) \right) \\
 = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi).
 \]

 By maximising the log likelihood function with respect to μ show that the maximum likelihood estimate for the mean is the sample mean:

 \[
 \mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n.
 \]

4. Consider a toy problem of two classes, C_1 and C_2, each of which has a normal distribution in a two-dimensional vector space, and assume there are some training samples for each class shown below:

 \[
 C_1 : \begin{pmatrix} 1, \ 2 \end{pmatrix}^T, \begin{pmatrix} 2, \ 0 \end{pmatrix}^T, \begin{pmatrix} 2, \ 4 \end{pmatrix}^T, \begin{pmatrix} 3, \ 2 \end{pmatrix}^T \\
 C_2 : \begin{pmatrix} 5, \ 1 \end{pmatrix}^T, \begin{pmatrix} 5, \ 2 \end{pmatrix}^T, \begin{pmatrix} 7, \ 2 \end{pmatrix}^T, \begin{pmatrix} 7, \ 3 \end{pmatrix}^T
 \]

 (a) Estimate the mean vector μ_i and covariance matrix Σ_i for each class $i = 1, 2$ in terms of maximum likelihood. (It is advisable to do this at least by hand without using a calculator!)
 (b) Using the parameters obtained above, sketch the contours of the normal distribution for each class.
 (c) Find the eigenvalues and eigen vectors of each Σ_i, $i=1,2$, and discuss how they are related to the shape of the distribution. [non-examinable]

(PTO)