Tutorial 8: Classification with Gaussians

1. Consider a pattern recognition problem with two classes A and B. Each class is modelled by a class-conditional Gaussian density. Class A is parameterised by mean $\mu_A = 4$ and variance $\sigma_A^2 = 1$; class B is parameterised by mean $\mu_B = 2$ and variance $\sigma_B^2 = 4$.

 (a) On the same graph sketch the probability density function for each class.

 (b) The following three test items are observed:

 $$x_1 = 3$$
 $$x_2 = 4$$
 $$x_3 = 8$$

 Assume that the classes have equal prior probabilities. To which classes should these points be assigned?

 (c) You are told that the prior probability of class B is twice that of class A. To which classes would you now assign points x_1, x_2, x_3?

 (d) What are the benefits and drawbacks of using Gaussian probability density functions as a generative model for real world pattern recognition problems?

2. In a two-class pattern classification problem, with classes A and B, each class is modelled using a one-dimensional Gaussian probability density function:

 $$p(x|A) = N(x; \mu_A, \sigma_A^2)$$
 $$p(x|B) = N(x; \mu_B, \sigma_B^2).$$

 Assume the classes have equal prior probabilities, and that $\mu_A \neq \mu_B$ and $\sigma_A^2 \neq \sigma_B^2$.

 (a) Write down a suitable discriminant function for this problem.

 (b) Derive the quadratic equation in x that defines the decision boundary between the classes.
3. The notes stated without proof that the sample mean (\(\mu_{ML}\)) and sample variance (\(\sigma^2_{ML}\)) are the maximum likelihood solutions for the parameters of a one-dimensional Gaussian. Consider the log likelihood of a Gaussian with mean \(\mu\) and variance \(\sigma^2\), given a set of \(N\) data points \(\{x_1, \ldots, x_N\}\):

\[
L = \ln p(\{x_1, \ldots, x_n\} | \mu, \sigma^2) = -\frac{1}{2} \sum_{n=1}^{N} \left(\frac{(x_n - \mu)^2}{\sigma^2} - \ln \sigma^2 - \ln(2\pi) \right) \\
= -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi) .
\]

By maximising the log likelihood function with respect to \(\mu\) show that the maximum likelihood estimate for the mean is the sample mean:

\[
\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n.
\]

4. Consider a toy problem of two classes, \(C_1\) and \(C_2\), each of which has a normal distribution in a two-dimensional vector space, and assume there are some training samples for each class shown below:

\[
C_1 : \quad (1, 2)^T, (2, 0)^T, (2, 4)^T, (3, 2)^T \\
C_2 : \quad (5, 1)^T, (5, 2)^T, (7, 2)^T, (7, 3)^T
\]

(a) Estimate the mean vector \(\mu_i\) and covariance matrix \(\Sigma_i\) for each class \(i = 1, 2\) in terms of maximum likelihood. (It is advisable to do this at least by hand without using a calculator!)

(b) Using the parameters obtained above, sketch the contours of the normal distribution for each class.

(c) Find the eigen values and eigen vectors of each \(\Sigma_i, i = 1, 2\), and discuss how they are related to the shape of the distribution. [non-examinable]