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Tutorial 8: Classification with Gaussians

1. Consider a pattern recognition problem with two classes A and B. Each class is modelled by a
class-conditional Gaussian density. Class A is parameterised by mean µA=4 and variance σ2

A=1;
class B is parameterised by mean µB=2 and variance σ2

B=4.

(a) On the same graph sketch the probability density function for each class.

(b) The following three test items are observed:

x1 = 3
x2 = 4
x3 = 8

Assume that the classes have equal prior probabilities. To which classes should these points
be assigned?

(c) You are told that the prior probability of class B is twice that of class A. To which classes
would you now assign points x1, x2, x3?

(d) What are the benefits and drawbacks of using Gaussian probability density functions as a
generative model for real world pattern recognition problems?

2. In a two-class pattern classification problem, with classes A and B, each class is modelled using
a one-dimensional Gaussian probability density function:

p(x |A) = N(x; µA, σ
2
A)

p(x |B) = N(x; µB, σ
2
B).

Assume the classes have equal prior probabilities, and that µA , µB and σ2
A , σ

2
B.

(a) Write down a suitable discriminant function for this problem.

(b) Derive the quadratic equation in x that defines the decision boundary between the classes.
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3. The notes stated without proof that the sample mean (µML) and sample variance (σ2
ML) are the

maximum likelihood solutions for the parameters of a one-dimensional Gaussian. Consider
the log likelihood of a Gaussian with mean µ and variance σ2, given a set of N data points
{x1, . . . , xN}:

L = ln p({x1, . . . , xn} |µ, σ2) = −1
2

N∑

n=1

(
(xn − µ)2

σ2 − lnσ2 − ln(2π)
)

= − 1
2σ2

N∑

n=1

(xn − µ)2 − N
2

lnσ2 − N
2

ln(2π) .

By maximising the log likelihood function with respect to µ show that the maximum likelihood
estimate for the mean is the sample mean:

µML =
1
N

N∑

n=1

xn.

4. Consider a toy problem of two classes, C1 and C2, each of which has a normal distribution in a
two-dimensional vector space, and assume there are some training samples for each class shown
below:

C1 : (1, 2)T , (2, 0)T , (2, 4)T , (3, 2)T

C2 : (5, 1)T , (5, 2)T , (7, 2)T , (7, 3)T

(a) Estimate the mean vector µ̂i and covariance matrix Σ̂i for each class i = 1, 2 in terms of
maximum likelihood. (It is advisable to do this at least by hand without using a calculator!)

(b) Using the parameters obtained above, sketch the contours of the normal distribution for
each class.

(c) Find the eigen values and eigen vectors of each Σ̂i, i=1, 2, and discuss how they are related
to the shape of the distribution. [non-examinable]


