
Formal Verification

Lecture 5: Computation Tree Logic (CTL)

Jacques Fleuriot1
jdf@inf.ac.uk

1With thanks to Bob Atkey for some of the diagrams.

jdf@inf.ac.uk

Recap

▶ Previously:
▶ Linear-time Temporal Logic

▶ This time:
▶ A branching-time logic: Computation Tree Logic (CTL)
▶ Syntax and Semantics
▶ Comparison with LTL, CTL∗
▶ Model checking CTL

CTL Syntax

Assume a set Atom of atom propositions.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ
| AX ϕ | EX ϕ | AF ϕ | EF ϕ | AG ϕ | EG ϕ
| A[ϕ U ϕ] | E[ϕ U ϕ]

where p ∈ Atom.

Each temporal connective is a pair of a path quantifier :
A — for all paths
E — there exists a path

and an LTL-like temporal operator X, F, G, U.

Precedence (high-to-low): (AX,EX,AF,EF,AG,EG,¬), (∧,∨),→

CTL Semantics 1: Transition Systems and Paths

(This is the same as for LTL)

Definition (Transition System)
A transition system M = ⟨S,→, L⟩ consists of:

S a finite set of states
→ ⊆ S× S transition relation

L : S → P(Atom) a labelling function

such that ∀s1 ∈ S. ∃s2 ∈ S. s1 → s2

Definition (Path)
A path π in a transition system M = ⟨S,→, L⟩ is an infinite
sequence of states s0, s1, ... such that ∀i ≥ 0. si → si+1.
Paths are written as: π = s0 → s1 → s2 → ...

CTL Semantics 2: Satisfaction Relation

Satisfaction relation M, s |= ϕ read as

state s in model M satisfies CTL formula ϕ

We often leave M implicit.
The propositional connectives:

s |= ⊤
s ̸|= ⊥
s |= p iff p ∈ L(s)
s |= ¬ϕ iff s ̸|= ϕ
s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ
s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ
s |= ϕ→ ψ iff s |= ϕ implies s |= ψ

CTL Semantics 2: Satisfaction Relation
The temporal connectives, assuming path π = s0 → s1 → s2 → ...,

s |= AX ϕ iff ∀π s.t. s0 = s. s1 |= ϕ

s |= EX ϕ iff ∃π s.t. s0 = s. s1 |= ϕ

s |= AG ϕ iff ∀π s.t. s0 = s. ∀i. si |= ϕ

s |= EG ϕ iff ∃π s.t. s0 = s. ∀i. si |= ϕ

s |= AF ϕ iff ∀π s.t. s0 = s. ∃i. si |= ϕ

s |= EF ϕ iff ∃π s.t. s0 = s. ∃i. si |= ϕ

s |= A[ϕ U ψ] iff ∀π s.t. s0 = s.

∃i. si |= ψ and ∀j < i. sj |= ϕ

s |= E[ϕ U ψ] iff ∃π s.t. s0 = s.

∃i. si |= ψ and ∀j < i. sj |= ϕ

Note: The semantics for AX and EX is given differenttly in H&R.

CTL in Pictures

AX ϕ

For every next state, ϕ holds.

CTL in Pictures

EX ϕ

There exists a next state where ϕ holds.

CTL in Pictures

AF ϕ

For all paths, there exists a future state where ϕ holds.

CTL in Pictures

EF ϕ

There exists a path with a future state where ϕ holds.

CTL in Pictures

AG ϕ

For all paths, for all states along them, ϕ holds.

CTL in Pictures

EG ϕ

There exists a path such that, for all states along it, ϕ holds.

CTL in Pictures

A[ϕ U ψ]

For all paths, ψ eventually holds, and ϕ holds at all states earlier.

CTL in Pictures

E[ϕ U ψ]

There exists a path where ψ eventually holds, and ϕ holds at all
states earlier.

Examples of CTL formulas (and their possible readings)
▶ EF ϕ

it is possible to get to a state where ϕ is true

▶ AG AF enabled
A certain process is enabled infinitely often on every computation path

▶ AG (requested → AF acknowledged)
for any state, if a request ocurs, then it will eventually be acknowledged

▶ AG (ϕ→ E[ϕ U ψ])
for any state, if ϕ holds, then there is a future where ψ eventually holds,
and ϕ holds for all points in between

▶ AG (ϕ→ EG ψ)
for any state, if ϕ holds then there is a future where ψ always holds

▶ EF AG ϕ
there exists a possible state in the future, from where ϕ is always true

Examples of CTL formulas (and their possible readings)
▶ EF ϕ

it is possible to get to a state where ϕ is true

▶ AG AF enabled
A certain process is enabled infinitely often on every computation path

▶ AG (requested → AF acknowledged)
for any state, if a request ocurs, then it will eventually be acknowledged

▶ AG (ϕ→ E[ϕ U ψ])
for any state, if ϕ holds, then there is a future where ψ eventually holds,
and ϕ holds for all points in between

▶ AG (ϕ→ EG ψ)
for any state, if ϕ holds then there is a future where ψ always holds

▶ EF AG ϕ
there exists a possible state in the future, from where ϕ is always true

Examples of CTL formulas (and their possible readings)
▶ EF ϕ

it is possible to get to a state where ϕ is true

▶ AG AF enabled
A certain process is enabled infinitely often on every computation path

▶ AG (requested → AF acknowledged)
for any state, if a request ocurs, then it will eventually be acknowledged

▶ AG (ϕ→ E[ϕ U ψ])
for any state, if ϕ holds, then there is a future where ψ eventually holds,
and ϕ holds for all points in between

▶ AG (ϕ→ EG ψ)
for any state, if ϕ holds then there is a future where ψ always holds

▶ EF AG ϕ
there exists a possible state in the future, from where ϕ is always true

Examples of CTL formulas (and their possible readings)
▶ EF ϕ

it is possible to get to a state where ϕ is true

▶ AG AF enabled
A certain process is enabled infinitely often on every computation path

▶ AG (requested → AF acknowledged)
for any state, if a request ocurs, then it will eventually be acknowledged

▶ AG (ϕ→ E[ϕ U ψ])
for any state, if ϕ holds, then there is a future where ψ eventually holds,
and ϕ holds for all points in between

▶ AG (ϕ→ EG ψ)
for any state, if ϕ holds then there is a future where ψ always holds

▶ EF AG ϕ
there exists a possible state in the future, from where ϕ is always true

Examples of CTL formulas (and their possible readings)
▶ EF ϕ

it is possible to get to a state where ϕ is true

▶ AG AF enabled
A certain process is enabled infinitely often on every computation path

▶ AG (requested → AF acknowledged)
for any state, if a request ocurs, then it will eventually be acknowledged

▶ AG (ϕ→ E[ϕ U ψ])
for any state, if ϕ holds, then there is a future where ψ eventually holds,
and ϕ holds for all points in between

▶ AG (ϕ→ EG ψ)
for any state, if ϕ holds then there is a future where ψ always holds

▶ EF AG ϕ
there exists a possible state in the future, from where ϕ is always true

Examples of CTL formulas (and their possible readings)
▶ EF ϕ

it is possible to get to a state where ϕ is true

▶ AG AF enabled
A certain process is enabled infinitely often on every computation path

▶ AG (requested → AF acknowledged)
for any state, if a request ocurs, then it will eventually be acknowledged

▶ AG (ϕ→ E[ϕ U ψ])
for any state, if ϕ holds, then there is a future where ψ eventually holds,
and ϕ holds for all points in between

▶ AG (ϕ→ EG ψ)
for any state, if ϕ holds then there is a future where ψ always holds

▶ EF AG ϕ
there exists a possible state in the future, from where ϕ is always true

CTL Equivalences

de Morgan dualities for the temporal connectives:

¬EX ϕ ≡ AX ¬ϕ
¬EF ϕ ≡ AG ¬ϕ
¬EG ϕ ≡ AF ¬ϕ

Also have

AF ϕ ≡ A[⊤ U ϕ]
EF ϕ ≡ E[⊤ U ϕ]
A[ϕ U ψ] ≡ ¬(E[¬ψ U (¬ϕ ∧ ¬ψ)] ∨ EG ¬ψ)

From these, one can show that the sets {AU,EU,EX} and
{EU,EG,EX} are both adequate sets of temporal connectives.

Differences between LTL and CTL
LTL allows for questions of the form

▶ For all paths, does the LTL formula ϕ hold?
▶ Does there exist a path on which the LTL formula ϕ holds?

(Ask whether ¬ϕ holds on all paths, and ask for a counterexample)

CTL allows mixing of path quantifiers:
▶ AG (p → EG q)

For all paths, if p is true, then there exists a path on which q is always
true.

However, some path properties are impossible to express in CTL
LTL: G F p → G F q
CTL: AG AF p → AG AF q

}
are not the same

Exist fair refinements of CTL that address this issue to some extent.
▶ E.g., path quantifiers that only consider paths where something happens

infinitely often.

LTL vs CTL

LTL: G F p → G F q
CTL: AG AF p → AG AF q

}
are not the same

The CTL formula is trivially satisfied, because AG AF p is not
satisfied. The LTL formula is not satisfied, because the path cycling
through s0 forever satisfies G F p but not G F q.

LTL vs CTL

LTL: F G p
CTL: AF AG p

}
are not the same

Exercise: Why?

CTL Model Checking

CTL Model Checking seeks to answer the question: is it the case that

M, s0 |= ϕ

for some initial state s0?

CTL Model Checking algorithms usually fix M = ⟨S,→, L⟩ and ϕ
and compute all states s of M that satisfy ϕ:

JϕKM = {s ∈ S | M, s |= ϕ}

“the denotation of ϕ in the model M”

The model checking question now becomes: s0 ∈ JϕKM?

(The model M is usually left implicit)

Denotation Semantics for CTL

We compute JϕK recursively on the structure of ϕ:

J⊤K = SJ⊥K = ∅JpK = {s ∈ S | p ∈ L(s)}J¬ϕK = S− JϕKJϕ ∧ ψK = JϕK ∩ JψKJϕ ∨ ψK = JϕK ∪ JψKJϕ→ ψK = (S− JϕK) ∪ JψK
Since JϕK is always a finite set, these are computable.

Denotation Semantics of the Temporal Connectives

JEX ϕK = pre∃(JϕK)JAX ϕK = pre∀(JϕK)
where

pre∃(Y)
·
= {s ∈ S | ∃s′ ∈ S. (s → s′) ∧ s′ ∈ Y}

pre∀(Y)
·
= {s ∈ S | ∀s′ ∈ S. (s → s′) → s′ ∈ Y}

these are again computable, because Y and S are finite.

But what about the rest of the temporal connectives? e.g.

JEF ϕK = {s ∈ S | ∃π s.t. s0 = s. ∃i. si |= ϕ}

No obvious way to compute this: there are infinitely many paths π!

Approximating JEF ϕK
Define

EF0 ϕ = ⊥
EFi+1 ϕ = ϕ ∨ EX EFi ϕ

Then
EF1 ϕ = ϕ
EF2 ϕ = ϕ ∨ EX ϕ
EF3 ϕ = ϕ ∨ EX (ϕ ∨ EX ϕ)
...

s ∈ JEFi ϕK if there exists a finite path of length i− 1 from s and ϕ
holds at some point along that path.

For a given (fixed) model M, let n = |S|. If there is a path of length
k > n on which ϕ holds somewhere, there will also be a path of
length n. (Proof: take the k-length path and repeatedly cut out
segments between repeated states.)

Therefore, for all k > n, JEFk ϕK = JEFn ϕK

Computing JEF ϕK
By a similar argument,

JEF ϕK = JEFn ϕK
The approximations can be computed by recursion on i:

JEF0 ϕK = ∅JEFi+1 ϕK = JϕK ∪ pre∃(JEFi ϕK)
So we have an effective way of computing JEF ϕK.

Approximating JEG ϕK
Define

EG0 ϕ = ⊤
EGi+1 ϕ = ϕ ∧ EX EGi ϕ

Then
EG1 ϕ = ϕ
EG2 ϕ = ϕ ∧ EX ϕ
EG3 ϕ = ϕ ∧ EX (ϕ ∧ EX ϕ)
...

s ∈ JEGi ϕK if there exists a finite path of length i− 1 from s and ϕ
holds at every point along that path.

As with JEF ϕK, we have for all k > n, JEGk ϕK = JEGn ϕK = JEG ϕK
and so we can compute JEG ϕK.

Fixed point Theory

What’s happening here is that we are computing fixed points.

A set X ⊆ S is a fixed point of a function F : P(S) → P(S) iff
F(X) = X.

We have that (for n = |S|)

JEFn ϕK = JEFn+1 ϕK
= Jϕ ∨ EX EFn ϕK
= JϕK ∪ pre∃(JEFn ϕK)

so JEFnK is a fixed point of F(Y) = JϕK ∪ pre∃(Y).

Also, JEF ϕK is a fixed point of F, since JEF ϕK = JEFn ϕK.
More specifically, they are both the least fixed point of F.

Fixed point Theorem
Let F : P(S) → P(S) be a function that takes sets to sets.

▶ F is monotone iff X ⊆ Y implies F(X) ⊆ F(Y).
▶ Let F0(X) = X and F i+1(X) = F(F i(X)).
▶ Given a collection of sets C ⊆ P(S), a set X ∈ C is

1. the least element of C if ∀Y ∈ C. X ⊆ Y; and
2. the greatest element of C if ∀Y ∈ C. Y ⊆ X.

Theorem (Knaster-Tarski (Special Case))
Let S be a set with n elements and F : P(S) → P(S) be a monotone
function. Then

▶ Fn(∅) is the least fixed point of F; and
▶ Fn(S) is the greatest fixed point of F.

(Proof: see H&R, Section 3.7.1)

This theorem justifies Fn(∅) and Fn(S) being fixed points of F
without the need, as before, to appeal to further details about F.

Denotational semantics of temporal connectives

When F : P(S) → P(S) is a monotone function, we write
▶ µY. F(Y) for the least fixed point of F; and
▶ νY. F(Y) for the greatest fixed point of F.

With this notation, we can define:

JEF ϕK = µY. JϕK ∪ pre∃(Y)JEG ϕK = νY. JϕK ∩ pre∃(Y)JAF ϕK = µY. JϕK ∪ pre∀(Y)JAG ϕK = νY. JϕK ∩ pre∀(Y)JE[ϕ U ψ]K = µY. JψK ∪ (JϕK ∩ pre∃(Y))JA[ϕ U ψ]K = µY. JψK ∪ (JϕK ∩ pre∀(Y))

In every case, F is monotone, so the Knaster-Tarski theorem assures
us that the fixed point exists, and can be computed.

Further CTL Equivalences

The fixed point characterisations of the CTL temporal connectives
justify some more equivalences between CTL formulas:

EF ϕ ≡ ϕ ∨ EX EF ϕ
EG ϕ ≡ ϕ ∧ EX EG ϕ
AF ϕ ≡ ϕ ∨ AX AF ϕ
AG ϕ ≡ ϕ ∧ AX AG ϕ
E[ϕ U ψ] ≡ ψ ∨ (ϕ ∧ EX E[ϕ U ψ])
A[ϕ U ψ] ≡ ψ ∨ (ϕ ∧ AX A[ϕ U ψ])

Summary

▶ CTL (H&R 3.4, 3.5, 3.6.1, 3.7)
▶ CTL, Syntax and Semantics
▶ Comparison with LTL
▶ Model Checking algorithm for CTL

▶ Next time:
▶ (A taste of) The LTL Model Checking algorithm

