Formal Verification

Lecture 5: Computation Tree Logic (CTL)

Jacques Fleuriot¹ jdf@inf.ac.uk

¹With thanks to Bob Atkey for some of the diagrams.

Recap

- ► Previously:
 - ► *Linear-time* Temporal Logic
- ► This time:
 - ▶ A *branching-time* logic: Computation Tree Logic (CTL)
 - ► Syntax and Semantics
 - ► Comparison with LTL, CTL*
 - Model checking CTL

CTL Syntax

Assume a set *Atom* of atom propositions.

$$\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \to \phi$$
$$\mid \mathbf{AX} \phi \mid \mathbf{EX} \phi \mid \mathbf{AF} \phi \mid \mathbf{EF} \phi \mid \mathbf{AG} \phi \mid \mathbf{EG} \phi$$
$$\mid \mathbf{A}[\phi \cup \phi] \mid \mathbf{E}[\phi \cup \phi]$$

where $p \in Atom$.

Each temporal connective is a pair of a *path quantifier*:

 \mathbf{A} — for all paths

E — there exists a path

and an LTL-like temporal operator X, F, G, U.

Precedence (high-to-low): $(AX, EX, AF, EF, AG, EG, \neg), (\land, \lor), \rightarrow$

CTL Semantics 1: Transition Systems and Paths

(This is the same as for LTL)

Definition (Transition System)

A transition system $\mathcal{M} = \langle S, \rightarrow, L \rangle$ consists of:

$$S$$
 a finite set of states $\rightarrow \subseteq S \times S$ transition relation $L: S \rightarrow \mathcal{P}(Atom)$ a labelling function

such that $\forall s_1 \in S$. $\exists s_2 \in S$. $s_1 \rightarrow s_2$

Definition (Path)

A path π in a transition system $\mathcal{M} = \langle S, \rightarrow, L \rangle$ is an infinite sequence of states $s_0, s_1, ...$ such that $\forall i \geq 0$. $s_i \rightarrow s_{i+1}$.

Paths are written as: $\pi = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ...$

CTL Semantics 2: Satisfaction Relation

Satisfaction relation \mathcal{M} , $s \models \phi$ read as

state s in model ${\cal M}$ satisfies CTL formula ϕ

We often leave \mathcal{M} implicit.

The propositional connectives:

```
\begin{array}{llll} s & \models & \top \\ s & \not\models & \bot \\ s & \models & p & \text{iff} & p \in L(s) \\ s & \models & \neg \phi & \text{iff} & s \not\models \phi \\ s & \models & \phi \land \psi & \text{iff} & s \models \phi \text{ and } s \models \psi \\ s & \models & \phi \lor \psi & \text{iff} & s \models \phi \text{ or } s \models \psi \\ s & \models & \phi \to \psi & \text{iff} & s \models \phi \text{ implies } s \models \psi \end{array}
```

CTL Semantics 2: Satisfaction Relation

The temporal connectives, assuming path $\pi = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ...$,

$$s \models AX \phi$$
 iff $\forall \pi \text{ s.t. } s_0 = s. \ s_1 \models \phi$
 $s \models EX \phi$ iff $\exists \pi \text{ s.t. } s_0 = s. \ s_1 \models \phi$
 $s \models AG \phi$ iff $\forall \pi \text{ s.t. } s_0 = s. \ \forall i. \ s_i \models \phi$
 $s \models EG \phi$ iff $\exists \pi \text{ s.t. } s_0 = s. \ \forall i. \ s_i \models \phi$
 $s \models AF \phi$ iff $\forall \pi \text{ s.t. } s_0 = s. \ \exists i. \ s_i \models \phi$
 $s \models EF \phi$ iff $\exists \pi \text{ s.t. } s_0 = s. \ \exists i. \ s_i \models \phi$
 $s \models A[\phi U \psi]$ iff $\forall \pi \text{ s.t. } s_0 = s.$
 $\exists i. \ s_i \models \psi \text{ and } \forall j < i. \ s_j \models \phi$
 $\exists i. \ s_i \models \psi \text{ and } \forall j < i. \ s_j \models \phi$

Note: The semantics for AX and EX is given differenttly in H&R.

 $AX \phi$

For every next state, ϕ holds.

EX ϕ

There *exists* a next state where ϕ holds.

For all paths, there exists a future state where ϕ holds.

There exists a path with a future state where ϕ holds.

For all paths, for all states along them, ϕ holds.

EG ϕ

There exists a path such that, for all states along it, ϕ holds.

 $A[\phi U \psi]$

For all paths, ψ eventually holds, and ϕ holds at all states earlier.

 $\mathbf{E}[\phi \ \mathbf{U} \ \psi]$

There exists a path where ψ eventually holds, and ϕ holds at all states earlier.

EF ϕ it is possible to get to a state where ϕ is true

- **EF** ϕ *it is possible to get to a state where* ϕ *is true*
- ► AG AF enabled
 A certain process is enabled infinitely often on every computation path

- **EF** ϕ *it is possible to get to a state where* ϕ *is true*
- ► AG AF enabled
 A certain process is enabled infinitely often on every computation path
- ► AG (requested → AF acknowledged) for any state, if a request ocurs, then it will eventually be acknowledged

- **EF** ϕ it is possible to get to a state where ϕ is true
- ► AG AF enabled
 A certain process is enabled infinitely often on every computation path
- ► AG (requested → AF acknowledged) for any state, if a request ocurs, then it will eventually be acknowledged
- ▶ AG $(\phi \to E[\phi U \psi])$ for any state, if ϕ holds, then there is a future where ψ eventually holds, and ϕ holds for all points in between

- **EF** ϕ *it is possible to get to a state where* ϕ *is true*
- ► AG AF enabled
 A certain process is enabled infinitely often on every computation path
- ► AG (requested → AF acknowledged) for any state, if a request ocurs, then it will eventually be acknowledged
- ▶ AG $(\phi \to E[\phi U \psi])$ for any state, if ϕ holds, then there is a future where ψ eventually holds, and ϕ holds for all points in between
- ▶ AG $(\phi \to \text{EG } \psi)$ for any state, if ϕ holds then there is a future where ψ always holds

- **EF** ϕ *it is possible to get to a state where* ϕ *is true*
- ► AG AF enabled
 A certain process is enabled infinitely often on every computation path
- ► AG (requested → AF acknowledged) for any state, if a request ocurs, then it will eventually be acknowledged
- ▶ AG $(\phi \to E[\phi \ U \ \psi])$ for any state, if ϕ holds, then there is a future where ψ eventually holds, and ϕ holds for all points in between
- ▶ AG $(\phi \to \text{EG } \psi)$ for any state, if ϕ holds then there is a future where ψ always holds
- ► EF AG ϕ there exists a possible state in the future, from where ϕ is always true

CTL Equivalences

de Morgan dualities for the temporal connectives:

$$\neg EX \phi \equiv AX \neg \phi$$

$$\neg EF \phi \equiv AG \neg \phi$$

$$\neg EG \phi \equiv AF \neg \phi$$

Also have

$$\begin{array}{lll} \mathbf{A}\mathbf{F} \; \phi & \equiv & \mathbf{A}[\top \; \mathbf{U} \; \phi] \\ \mathbf{E}\mathbf{F} \; \phi & \equiv & \mathbf{E}[\top \; \mathbf{U} \; \phi] \\ \mathbf{A}[\phi \; \mathbf{U} \; \psi] & \equiv & \neg (\mathbf{E}[\neg \psi \; \mathbf{U} \; (\neg \phi \land \neg \psi)] \lor \mathbf{E}\mathbf{G} \; \neg \psi) \end{array}$$

From these, one can show that the sets $\{AU, EU, EX\}$ and $\{EU, EG, EX\}$ are both adequate sets of temporal connectives.

Differences between LTL and CTL

LTL allows for questions of the form

- ▶ For all paths, does the LTL formula ϕ hold?
- ▶ Does there exist a path on which the LTL formula ϕ holds? (Ask whether $\neg \phi$ holds on all paths, and ask for a counterexample)

CTL allows mixing of path quantifiers:

▶ AG $(p \rightarrow EG \ q)$ For all paths, if p is true, then there exists a path on which q is always true.

However, some path properties are impossible to express in CTL

LTL: $G F p \rightarrow G F q$ CTL: $AG AF p \rightarrow AG AF q$ are not the same

Exist *fair* refinements of CTL that address this issue to some extent.

► E.g., path quantifiers that only consider paths where something happens infinitely often.

LTL vs CTL

LTL: $G F p \rightarrow G F q$ CTL: $AG AF p \rightarrow AG AF q$ are not the same

The CTL formula is trivially satisfied, because AG AF p is not satisfied. The LTL formula is not satisfied, because the path cycling through s_0 forever satisfies G F p but not G F q.

LTL vs CTL

LTL: F G pCTL: AF AG p are not the same

Exercise: Why?

CTL Model Checking

CTL Model Checking seeks to answer the question: is it the case that

$$\mathcal{M}, s_0 \models \phi$$

for some initial state s_0 ?

CTL Model Checking algorithms usually fix $\mathcal{M} = \langle S, \rightarrow, L \rangle$ and ϕ and compute all states s of \mathcal{M} that satisfy ϕ :

$$\llbracket \phi \rrbracket_{\mathcal{M}} = \{ s \in S \mid \mathcal{M}, s \models \phi \}$$

"the denotation of ϕ in the model \mathcal{M} "

The model checking question now becomes: $s_0 \in \llbracket \phi \rrbracket_{\mathcal{M}}$?

(The model M is usually left implicit)

Denotation Semantics for CTL

We compute $\llbracket \phi \rrbracket$ recursively on the structure of ϕ :

Since $\llbracket \phi \rrbracket$ is always a finite set, these are computable.

Denotation Semantics of the Temporal Connectives

where

$$\operatorname{pre}_{\exists}(Y) \stackrel{:}{=} \{ s \in S \mid \exists s' \in S. \ (s \to s') \land s' \in Y \}$$

$$\operatorname{pre}_{\forall}(Y) \stackrel{:}{=} \{ s \in S \mid \forall s' \in S. \ (s \to s') \to s' \in Y \}$$

these are again computable, because *Y* and *S* are finite.

But what about the rest of the temporal connectives? e.g.

$$\llbracket \mathbf{EF} \ \phi \rrbracket = \{ \mathbf{s} \in S \mid \exists \pi \text{ s.t. } \mathbf{s}_0 = \mathbf{s}. \ \exists \mathbf{i}. \ \mathbf{s}_i \models \phi \}$$

No obvious way to compute this: there are infinitely many paths π !

Approximating $\llbracket \mathbf{EF} \ \phi \rrbracket$

Define

$$\mathbf{EF}_0 \phi = \bot
\mathbf{EF}_{i+1} \phi = \phi \lor \mathbf{EX} \mathbf{EF}_i \phi$$

Then

$$\begin{array}{lcl} \mathbf{EF_1} \ \phi & = & \phi \\ \mathbf{EF_2} \ \phi & = & \phi \lor \mathbf{EX} \ \phi \\ \mathbf{EF_3} \ \phi & = & \phi \lor \mathbf{EX} \ (\phi \lor \mathbf{EX} \ \phi) \\ \dots \end{array}$$

 $s \in \llbracket \mathbf{EF}_i \ \phi \rrbracket$ if there exists a finite path of length i-1 from s and ϕ holds at some point along that path.

For a given (fixed) model M, let n = |S|. If there is a path of length k > n on which ϕ holds somewhere, there will also be a path of length n. (*Proof: take the k-length path and repeatedly cut out segments between repeated states.*)

Therefore, for all k > n, $\llbracket EF_k \phi \rrbracket = \llbracket EF_n \phi \rrbracket$

Computing [EF ϕ]

By a similar argument,

$$\llbracket \mathbf{EF} \ \phi \rrbracket = \llbracket \mathbf{EF}_n \ \phi \rrbracket$$

The approximations can be computed by recursion on *i*:

So we have an effective way of computing [EF ϕ].

Approximating [[EG ϕ]]

Define

$$\mathbf{EG}_0 \phi = \top \\
\mathbf{EG}_{i+1} \phi = \phi \wedge \mathbf{EX} \, \mathbf{EG}_i \phi$$

Then

$$\begin{array}{lcl} \mathbf{EG}_1 \; \phi & = & \phi \\ \mathbf{EG}_2 \; \phi & = & \phi \wedge \mathbf{EX} \; \phi \\ \mathbf{EG}_3 \; \phi & = & \phi \wedge \mathbf{EX} \; (\phi \wedge \mathbf{EX} \; \phi) \\ \dots \end{array}$$

 $s \in \llbracket \mathbf{EG}_i \ \phi \rrbracket$ if there exists a finite path of length i-1 from s and ϕ holds at every point along that path.

As with $\llbracket \mathrm{EF} \ \phi \rrbracket$, we have for all k > n, $\llbracket \mathrm{EG}_k \ \phi \rrbracket = \llbracket \mathrm{EG}_n \ \phi \rrbracket = \llbracket \mathrm{EG} \ \phi \rrbracket$ and so we can compute $\llbracket \mathrm{EG} \ \phi \rrbracket$.

Fixed point Theory

What's happening here is that we are computing fixed points.

A set $X \subseteq S$ is a *fixed point* of a function $F : \mathcal{P}(S) \to \mathcal{P}(S)$ iff F(X) = X.

We have that (for n = |S|)

$$\begin{bmatrix}
\mathbf{EF}_n \ \phi \end{bmatrix} = \begin{bmatrix}
\mathbf{EF}_{n+1} \ \phi \end{bmatrix} \\
= \begin{bmatrix} \phi \lor \mathbf{EX} \ \mathbf{EF}_n \ \phi \end{bmatrix} \\
= \begin{bmatrix} \phi \end{bmatrix} \cup \mathbf{pre}_{\exists} (\begin{bmatrix} \mathbf{EF}_n \ \phi \end{bmatrix})$$

so $\llbracket \mathbf{EF}_n \rrbracket$ is a fixed point of $F(Y) = \llbracket \phi \rrbracket \cup \mathrm{pre}_{\exists}(Y)$.

Also, $\llbracket \mathsf{EF} \ \phi \rrbracket$ is a fixed point of F , since $\llbracket \mathsf{EF} \ \phi \rrbracket = \llbracket \mathsf{EF}_n \ \phi \rrbracket$.

More specifically, they are both the **least** fixed point of *F*.

Fixed point Theorem

Let $F: \mathcal{P}(S) \to \mathcal{P}(S)$ be a function that takes sets to sets.

- ▶ *F* is monotone iff $X \subseteq Y$ implies $F(X) \subseteq F(Y)$.
- ► Let $F^0(X) = X$ and $F^{i+1}(X) = F(F^i(X))$.
- ▶ Given a collection of sets $C \subseteq \mathcal{P}(S)$, a set $X \in C$ is
 - 1. the least element of C if $\forall Y \in C$. $X \subseteq Y$; and 2. the greatest element of C if $\forall Y \in C$. $Y \subseteq X$.

Theorem (Knaster-Tarski (Special Case))

Let S be a set with n elements and $F: \mathcal{P}(S) \to \mathcal{P}(S)$ be a monotone function. Then

- ▶ $F^n(\emptyset)$ is the least fixed point of F; and
- $F^n(S)$ is the greatest fixed point of F.

(Proof: see H&R, Section 3.7.1)

This theorem justifies $F^n(\emptyset)$ and $F^n(S)$ being fixed points of F without the need, as before, to appeal to further details about F.

Denotational semantics of temporal connectives

When $F: \mathcal{P}(S) \to \mathcal{P}(S)$ is a monotone function, we write

- \blacktriangleright μY . F(Y) for the least fixed point of F; and
- ▶ νY . F(Y) for the greatest fixed point of F.

With this notation, we can define:

In every case, *F* is monotone, so the Knaster-Tarski theorem assures us that the fixed point exists, and can be computed.

Further CTL Equivalences

The fixed point characterisations of the CTL temporal connectives justify some more equivalences between CTL formulas:

```
\begin{array}{lll} \mathbf{EF} \, \phi & \equiv & \phi \vee \mathbf{EX} \, \mathbf{EF} \, \phi \\ \mathbf{EG} \, \phi & \equiv & \phi \wedge \mathbf{EX} \, \mathbf{EG} \, \phi \\ \mathbf{AF} \, \phi & \equiv & \phi \vee \mathbf{AX} \, \mathbf{AF} \, \phi \\ \mathbf{AG} \, \phi & \equiv & \phi \wedge \mathbf{AX} \, \mathbf{AG} \, \phi \\ \mathbf{E}[\phi \, \mathbf{U} \, \psi] & \equiv & \psi \vee (\phi \wedge \mathbf{EX} \, \mathbf{E}[\phi \, \mathbf{U} \, \psi]) \\ \mathbf{A}[\phi \, \mathbf{U} \, \psi] & \equiv & \psi \vee (\phi \wedge \mathbf{AX} \, \mathbf{A}[\phi \, \mathbf{U} \, \psi]) \end{array}
```

Summary

- ► CTL (H&R 3.4, 3.5, 3.6.1, 3.7)
 - ► CTL, Syntax and Semantics
 - ► Comparison with LTL
 - ▶ Model Checking algorithm for CTL
- ► Next time:
 - ► (A taste of) The LTL Model Checking algorithm