
Distributed	Systems	
	

Mobile	&	Sensor	Compu5ng	
Rik	Sarkar	

	
University	of	Edinburgh	

Fall	2015	

Distributed Systems, Edinburgh, 2014

Mobile	and	Ubiquitous	compu5ng	

•  Devices	(computers)	are	carried	by	people	
(mobile)	
–  Laptops,	phones,	watches	…		

•  They	are	everywhere	
–  Carried	by	people	(mobile)	
–  Embedded	in	the	environment	

•  Coffee	machines,	cameras,	sensors	for	light	control,	
elevators…	

–  Produce	large	amounts	of	data	
•  Usage,	sensing…	

Distributed Systems, Edinburgh, 2014

Ubiquitous	
•  Advantages:	

–  There	are	computers	everywhere	
–  Everything	is	“smart”		
–  Poten5ally	use	computa5ons	on	these	to	make	them	even	
smarter	

•  Challenges:	
–  There	are	more	things	to	go	wrong	
–  Not	easy	to	make	things	work	well	coherently	
–  Consistent	plaTorms	for	managing	ubiquitous	devices	do	
not	exist	(yet)	

–  Devices	do	not	interoperate	easily	

Distributed Systems, Edinburgh, 2014

Mobile	

•  Advantages:	
–  The	same	device	is	carried	by	the	person	–	easy	to	give	
consistent	service	

–  Informa5on	whenever,	wherever	they	need	
–  Devices	have	sensors	–	poten5al	for	sensing	the	
environment	and	adap5ng	

•  Disadvantages:	
–  Connec5vity	is	challenge:	data	is	costly;	network	does	not	
work	the	same	way;	mobility	interferes	with	comunica5on	

–  Limited	baYery:	can’t	do	too	much	communica5on	
–  How	to	make	use	of	sensors,	not	so	well	understood	

Distributed Systems, Edinburgh, 2014

Context	aware	compu5ng	

•  Adapt	computa5ons	to	the	circumstances	
– Time	of	day	
–  Is	the	user	present?	
–  Is	the	phone	in	hand	or	in	pocket	
– Scan	for	wifi	only	when	indoors	
– Turn	off	ring	when	in	cinema,	mee-ng…	
– Recognize	ac5vity	and	bring	up	relevant	
informa5on	

– …	

Distributed Systems, Edinburgh, 2014

Context	aware	compu5ng	

•  Adapt	computa5ons	to	the	circumstances	
•  Basic	contexts	are	easy	to	iden5fy,	but	it	is	not	
always	clear	how	to	adapt	
– Turn	down	volume	at	night…	but	what	if	it	is	an	
important	call?	

•  Many	contexts	are	very	hard	to	detect	reliably	

Distributed Systems, Edinburgh, 2014

Example:	Indoor	vs	Outdoor	

•  Use	sensors	on	a	phone,	turn	off	wifi	scanning	
outdoors	

•  Light	levels	are	much	higher	outdoors	
–  In	day5me	and	if	phone	is	not	in	pocket	

•  City	streets	are	noisier	
•  Cellular	signal	strengths	drop	indoors	

– Depends	on	place	
•  Temperature,	magne5c	field…	

Distributed Systems, Edinburgh, 2014

Other	context	detec5on	examples	

•  Use	sound	to	detect	user	in	a	mee5ng	
•  Detect	transport	mode	(walking,	car,	bus,	
tram..)	
– Using	accelerometer	

•  Detect	presence	of	other	users	nearby	from	
wifi	ac5vity	

Distributed Systems, Edinburgh, 2014

Context	detec5on		

•  Generally	hard	
•  Concerns	about	privacy:	you	do	not	want	to	
send	context	informa5on	to	a	server	

•  Perhaps	distributed	computa5on	can	help	
– Use	data	from	many	phones	to	detect	context	
– But	again,	do	not	want	to	send	all	data	to	server	
– Do	as	much	of	it	as	possible	on	device	–	filter/
process	data	at	source	

Distributed Systems, Edinburgh, 2014

Networking	in	mobile	systems	

•  Difficulty:		
–  The	network	graph	changes	
– A	node	is	not	always	connected	to	the	same	router	

•  Example	system:	Mobile	ad-hoc	networks	
– Ad-hoc:	Unplanned	
– Devices	simply	connect	to	nearby	devices	and	route	
packets	

– Also	applies	to	sensor	networks	

Distributed Systems, Edinburgh, 2014

Rou5ng	in	ad	hoc	wireless	networks	

•  Find	route	between	pairs	of	nodes	wishing	to	
communicate.		

•  Proac5ve	protocols:	maintain	rou5ng	tables	at	
each	node	that	is	updated	as	changes	in	the	
network	topology	are	detected.	

–  Heavy	overhead	with	high	network	dynamics	(caused	
by	link/node	failures	or	node	movement).	

–  Not	prac5cal	for	networks	that	change	frequently	

Distributed Systems, Edinburgh, 2014

Rou5ng	in	ad	hoc	wireless	networks	

•  Reac5ve	protocols:	routes	are	constructed	on	
demand.	No	global	rou5ng	table	is	maintained.	

•  More	appropriate	for	networks	with	high	rate	
of	changes	

–  Ad	hoc	on	demand	distance	vector	rou5ng	(AODV)	
–  Dynamic	source	rou5ng	(DSR)	

Distributed Systems, Edinburgh, 2014

Dynamic	Source	Rou5ng	(DSR)	

•  Node	S	wants	to	send	a	message	to	node	D	
•  S	ini5ates	a	a	route	discovery	
•  S	floods	the	network	with	route	request	
(RREQ)	message	

•  Each	node	appends	its	own	id	to	the	message	

Distributed Systems, Edinburgh, 2014

Route	Discovery:	RREQ	

Distributed Systems, Edinburgh, 2014

Route	Discovery:	RREQ	

Distributed Systems, Edinburgh, 2014

Route	Discovery:	RREQ	

Distributed Systems, Edinburgh, 2014

Route	Discovery:	RREQ	

Distributed Systems, Edinburgh, 2014

Route	Discovery:	RREQ	

Distributed Systems, Edinburgh, 2014

Route	Discovery:	RREQ	

Distributed Systems, Edinburgh, 2014

Route	Discovery	in	DSR	

•  Des5na5on	D	on	receiving	the	first	RREQ	
sends	a	route	reply	(RREP)	

•  RREP	is	sent	on	a	route	obtained	by	reversing	
the	route	in	received	RREQ	

Distributed Systems, Edinburgh, 2014

Route	Discovery:	RREQ	

Distributed Systems, Edinburgh, 2014

Route	Discovery:	RREQ	

Distributed Systems, Edinburgh, 2014

When	

•  When	a	link	fails,	an	error	message	with	the	
link	name	is	sent	back	to	S.		

•  S	deletes	any	route	using		that	link	and	starts	
discovery.	

Distributed Systems, Edinburgh, 2014

Route	caching	

•  When	a	node	receives	or	forwards	a	message,	it	
learns	routes	to	all	nodes	on	the	path	

•  Advantage:	
–  S	may	not	need	to	send	RREQ	
–  Intermediate	node	on	receiving	RREQ,	can	respond	
with	complete	route	

•  Disadvantage:	
–  Caches	may	be	stale:	S	tries	many	cached	routes	
before	star5ng	a	discovery.	Or,	intermediate	nodes	
return	outdated	informa5on.	

Distributed Systems, Edinburgh, 2014

DSR:	Summary	
Advantages:	
•  Routes	computed	only	when	needed	–	good	for	changing	

networks	
•  Caching	can	make	things	efficient	
•  Does	not	create	loops	
Disadvantages	
•  En5re	route	must	be	contained	in	message:	can	be	long	for	

large	networks	
•  Flooding	causes	communica5on	to	many	nodes	
•  Stale	caches	can	be	a	problem	
•  Not	suitable	for	networks	where	changes	are	too	frequent	

Distributed Systems, Edinburgh, 2014

Ad	hoc	On-Demand	Distance		
Vector	Rou5ng	(AODV)	

•  Maintains	rou5ng	tables	at	nodes	so	that	the	
route	need	not	be	stored	in	the	message	

•  No	Caches:	Only	one	route	per	des5na5on	

Distributed Systems, Edinburgh, 2014

AODV	Route	Discovery	

•  Source	floods	the	network	
Distributed Systems, Edinburgh, 2014

AODV	Route	Discovery	

•  Other	nodes	create	parent	pointer	
•  A	node	forwards	a	RREQ	only	once	

Dst	 NxtHp	 Dist	

S	 S	 1	

Dst	 NxtHp	 Dist	

S	 S	 1	 Dst	 NxtHp	 Dist	

S	 S	 1	

Distributed Systems, Edinburgh, 2014

AODV	Route	Discovery	

•  Other	nodes	create	parent	pointer	
•  A	node	forwards	a	RREQ	only	once	

Dst	 NxtHp	 Dist	

S	 S	 1	

Dst	 NxtHp	 Dist	

S	 E	 2	

Distributed Systems, Edinburgh, 2014

AODV	Route	Discovery	

•  RREP	is	forwarded	via	reverse	path	

Dst	 NxtHp	 Dist	

S	 E	 2	

Dst	 NxtHp	 Dist	

S	 S	 1	

Dst	 NxtHp	 Dist	

S	 F	 3	

Distributed Systems, Edinburgh, 2014

AODV	Route	Discovery	

•  RREP	is	forwarded	via	reverse	path	
•  Creates	a	forward	path	

Dst	 NxtHp	 Dist	

S	 E	 2	

D	 D	 1	

Dst	 NxtHp	 Dist	

S	 S	 1	

D	 F	 2	

Dst	 NxtHp	 Dist	

S	 F	 3	

D	 D	 0	

Dst	 NxtHp	 Dist	

S	 S	 0	

D	 E	 3	

Distributed Systems, Edinburgh, 2014

Route	expiry 		

•  A	path	expires	if	not	used	for	a	certain	5me.	
•  If	a	node	sees	that	a	rou5ng	table	entry	has	
not	been	used	by	this	5me,	it	removes	this	
entry	

•  Even	if	the	path	itself	is	valid	
•  Good	for	networks	with	frequent	changes	
•  Bad	for	sta5c	and	stable	networks	

Distributed Systems, Edinburgh, 2014

Can	create	loops	

•  Assume	C->D	link	has	failed,	but	A	does	not	
know	because	the	ERR	message	was	lost	

•  C	is	now	trying	to	find	path	to	D	
•  A	responds	since	A	thinks	it	has	a	path	
•  Creates	loop:	C-E-A-B-C	

Distributed Systems, Edinburgh, 2014

Sequence	numbers	in	AODV	

•  If	A	has	a	route	to	D,	A	keeps	a	sequence	
number.		

•  A	increments	this	number	periodically:	tells	
how	old	the	informa5on	is	

Distributed Systems, Edinburgh, 2014

Using	sequence	numbers	

•  Rule	:	sequence	number	must	increase	along	
any	route	

Distributed Systems, Edinburgh, 2014

Sequence	number	rule	avoids	loop	

•  A	does	not	reply,	since	its	sequence	no.	is	less	
than	that	of	C	

Distributed Systems, Edinburgh, 2014

AODV	

•  Rou5ng	tables,	message	does	not	contain	
route	

•  Fresh	routes	preferred	
•  Old	unused	routes	expire	
•  Stale	routes	less	problema5c	
•  Needs	sequence	numbers	to	prevent	loops	
•  BeYer	for	more	dynamic,	changing	
environments	

Distributed Systems, Edinburgh, 2014

Rou5ng	in	ad	hoc	networks	

•  Reac5ve	protocols:	routes	are	constructed	on	
demand.	No	global	rou5ng	table	is	maintained.	

•  More	appropriate	for	networks	with	high	rate	
of	changes	

–  Ad	hoc	on	demand	distance	vector	rou5ng	(AODV)	
–  Dynamic	source	rou5ng	(DSR)	

•  Need	flooding	
–  Inefficient	in	large	networks	

Distributed Systems, Edinburgh, 2014

Geographical	rou5ng:	Using	loca5on	

•  Geographical	rou5ng	uses	a	node’s	
loca5on	to	discover	path	to	that	node.	

Distributed Systems, Edinburgh, 2014

x

y

Greedy Routing:
Forward to the neighbor that
is nearest to the destination

Geographical	rou5ng	

•  Assump5ons:	
–  Nodes	know	their	own	geographical	loca5on	
–  Nodes	know	their	1-hop	neighbors	
–  Rou5ng	des5na5ons	are	specified	

geographically	(a	loca5on,	or	a	geographical	
region)	

–  Each	packet	can	hold	a	small	amount	of	
rou5ng	informa5on.	

Distributed Systems, Edinburgh, 2014

Sensor	network	

•  Sensors	enabled	with	wireless	
– Can	communicate	with	nearby	sensors	
– Communica5on	to	server	rela5vely	costly	

•  Low	power,	but	lots	of	data	
– Not	worth	sending	everything	to	server		

•  Try	use	the	data	directly	inside	the	network	
–  In-network	distributed	compu5ng	

Distributed Systems, Edinburgh, 2014

Problem:	How	to	find	the	relevant	
data?	

•  A	tourist	in	a	park	asks	
•  “Where	is	the	elephant?”	
•  Out	of	all	the	sensors/cameras	which	one	is	close	
to	an	elephant?	

Distributed Systems, Edinburgh, 2014

Data	centric	rou5ng	
•  Tradi5onal	networks	try	to	route	to	an	IP	address	
•  Find	path	to	the	node	with	a	par5cular	ID	
•  But	what	if	we	try	to	find	data,	not	specific	
nodes?	

•  	Aler	all,	delivering	data	is	the	ul5mate	goal	of	
rou5ng	and	networks	

•  Data	centric	storage	
–  Storage	depends	on	the	data	(elephant,	giraffe,song…)	

•  Data	centric	rou5ng	(search)	
–  Route	to	the	data	

Distributed Systems, Edinburgh, 2014

Distributed	Database	

•  Informa5on	Producer	
– Can	be	anywhere	in	the	network	
– May	be	mobile	
– Many	producers	may	generate	data	of	the	same	
type	

•  User	or	Informa5on	Consumer	
– Can	be	anywhere	
– May	be	many		

Distributed Systems, Edinburgh, 2014

Distributed	Database:	Challenges	

•  Consumer	does	not	know	where	the	producer	is,	
and	vice	versa	

•  Need	to	search	:	Must	be	fast,	efficient	

Basic	methods:	
•  Push:	Producer	disseminates	data	
•  Pull:	Consumer	looks	for	the	data	
•  Push-pull:	Both	producer,	consumer	search	for	
each-other	

Distributed Systems, Edinburgh, 2014

Distributed	hash	tables	

•  Use	a	hash	on	the	data:	h(song1.mp3)	=	
node#26	

•  Anyone	that	has	song1.mp3	informs	node#26	
•  Anyone	that	needs	Song1.mp3	checks	with	
node#26	

•  Used	in	peer	to	peer	systems	like	Chord,	
pastry	etc	

Distributed Systems, Edinburgh, 2014

Geographic	Hash	Tables	
•  Content	based	hash	gives	
coordinates:	
–  h(lion)	=	(12,	07)	

•  Producer	sends	msg								
to	(12,	07)	by	geographic	
rou5ng	and	stores	data	

•  Consumer	sends	msg							
to	(12,	07)	by	geographic	
rou5ng	and	gets	data	

Distributed Systems, Edinburgh, 2014

GHT	

•  What	if	there	is	no	sensor	at	(12,	07)	?	

•  Use	the	sensor	nearest	to	it	

Distributed Systems, Edinburgh, 2014

Fault	handling	

•  What	if	home	node	a	dies?	
•  Replicas	have	a	5mer	that	triggers	a	new	check	
•  A	new	node	becomes	home	

Distributed Systems, Edinburgh, 2014

GHT	

•  Advantages	
– Simple	
– Handles	load	balancing	and	faults	

•  Disadvantages	
– Not	distance	sensi5ve:	everyone	has	to	go	to	hash	
node	even	if	producer	and	consumer	are	close	

–  If	a	data	is	queried	or	updated	olen,	that	node	
has	a	lot	of	traffic	–	boYleneck		

Distributed Systems, Edinburgh, 2014

Rumor	Rou5ng	

•  Producer:	Send	data	along	a	curve	or	random	
walk,	leave	data	or	pointers	on	nodes	

•  Consumer:	Route	along	another	curve	or	
random	walk,	hope	to	meet	data	or	pointer	

Distributed Systems, Edinburgh, 2014

Rumor	rou5ng		

•  Each	node	maintains	a	list	of	events	
•  Adds	events	as	they	happen	

•  Agents:	Packets	that	carry	events	in	the	
network	
– Aggregate	events	of	each	node	they	pass	through	

•  Agents	move	in	random	walk.	From	1-hop	
neighbors	select	one	that	has	not	been	visited	
recently	

Distributed Systems, Edinburgh, 2014

•  D	

Distributed Systems, Edinburgh, 2014

Mobile,	Ad-hoc	and	Sensor	network	

•  A	difficult	model	–	least	infrastructure,	low	power	
nodes,	communica5on/computa5on	expensive	

•  Not	en5rely	realis5c	
•  However,	it	makes	least	number	of	assumptons	

–  useful	as	a	basis	for	developing	distributed	protocols/
algorithms	

– Which	can	then	be	enhanced	using	available	
infrastructure	in	specific	cases	

Distributed Systems, Edinburgh, 2014

