Distributed Systems

Mobile & Sensor Computing
Rik Sarkar

University of Edinburgh
Fall 2015

Distributed Systems, Edinburgh, 2014



Mobile and Ubiquitous computing

* Devices (computers) are carried by people
(mobile)
— Laptops, phones, watches ...

* They are everywhere

— Carried by people (mobile)

— Embedded in the environment

e Coffee machines, cameras, sensors for light control,
elevators...

— Produce large amounts of data
* Usage, sensing...



Ubiquitous

* Advantages:
— There are computers everywhere
— Everything is “smart”

— Potentially use computations on these to make them even
smarter

* Challenges:
— There are more things to go wrong
— Not easy to make things work well coherently

— Consistent platforms for managing ubiquitous devices do
not exist (yet)

— Devices do not interoperate easily



Mobile

* Advantages:

— The same device is carried by the person — easy to give
consistent service

— Information whenever, wherever they need

— Devices have sensors — potential for sensing the
environment and adapting

* Disadvantages:

— Connectivity is challenge: data is costly; network does not
work the same way; mobility interferes with comunication

— Limited battery: can’t do too much communication
— How to make use of sensors, not so well understood



Context aware computing

* Adapt computations to the circumstances
— Time of day
— Is the user present?
— Is the phone in hand or in pocket
— Scan for wifi only when indoors
— Turn off ring when in cinema, meeting...

— Recognize activity and bring up relevant
information



Context aware computing

* Adapt computations to the circumstances

* Basic contexts are easy to identify, but it is not
always clear how to adapt

— Turn down volume at night... but what if it is an
important call?

* Many contexts are very hard to detect reliably



Example: Indoor vs Outdoor

Use sensors on a phone, turn off wifi scanning
outdoors

Light levels are much higher outdoors
— In daytime and if phone is not in pocket

City streets are noisier

Cellular signal strengths drop indoors
— Depends on place

Temperature, magnetic field...



Other context detection examples

* Use sound to detect user in a meeting

* Detect transport mode (walking, car, bus,
tram..)
— Using accelerometer

* Detect presence of other users nearby from
wifi activity



Context detection

* Generally hard

* Concerns about privacy: you do not want to
send context information to a server

* Perhaps distributed computation can help
— Use data from many phones to detect context
— But again, do not want to send all data to server

— Do as much of it as possible on device — filter/
process data at source



Networking in mobile systems

e Difficulty:
— The network graph changes
— A node is not always connected to the same router

 Example system: Mobile ad-hoc networks
— Ad-hoc: Unplanned

— Devices simply connect to nearby devices and route
packets

— Also applies to sensor networks



Routing in ad hoc wireless networks

Find route between pairs of nodes wishing to
communicate.

Proactive protocols: maintain routing tables at
each node that is updated as changes in the
network topology are detected.

— Heavy overhead with high network dynamics (caused
by link/node failures or node movement).

— Not practical for networks that change frequently



Routing in ad hoc wireless networks

 Reactive protocols: routes are constructed on
demand. No global routing table is maintained.

* More appropriate for networks with high rate
of changes
— Ad hoc on demand distance vector routing (AODV)
— Dynamic source routing (DSR)



Dynamic Source Routing (DSR)

Node S wants to send a message to node D
S initiates a a route discovery

S floods the network with route request
(RREQ) message

Each node appends its own id to the message



Route Discovery: RREQ




Route Discovery: RREQ

[
Broadcast transmission g




Route Discovery: RREQ




Route Discovery: RRE

Q



Route Discovery: RREQ




@@

Route Discovery: RREQ



Route Discovery in DSR

* Destination D on receiving the first RREQ
sends a route reply (RREP)

* RREP is sent on a route obtained by reversing
the route in received RREQ



Route Discovery: RREQ

RREP [S,E,F,J,D] @%D

s e
(&, \@\



Route Discovery: RREQ

DATA [S,E,F,J,D]

When node S sends a data packet to D, the entire route is
included in the packet header, hence the name source routing

Distributed Systems, Edinburgh, 2014



 When a link fails, an error message with the
link name is sent back to S.

* S deletes any route using that link and starts
discovery.



Route caching

* When a node receives or forwards a message, it
learns routes to all nodes on the path
* Advantage:

— S may not need to send RREQ

— Intermediate node on receiving RREQ, can respond
with complete route

* Disadvantage:

— Caches may be stale: S tries many cached routes

before starting a discovery. Or, intermediate nodes
return outdated information.



DSR: Summary

Advantages:

Routes computed only when needed — good for changing
networks

Caching can make things efficient
Does not create loops

Disadvantages

Entire route must be contained in message: can be long for
large networks

Flooding causes communication to many nodes
Stale caches can be a problem
Not suitable for networks where changes are too frequent



Ad hoc On-Demand Distance
Vector Routing (AODV)

* Maintains routing tables at nodes so that the
route need not be stored in the message

* No Caches: Only one route per destination



AODYV Route Discovery

—>
RREQ broadcast

e Source floods the network

Distributed Systems, Edinburgh, 2014



AODV Route Discovery

| Dst | NxtHp | Dist |
S S 1 —>
Reverse Path

* Other nodes create parent pointer
* A node forwards.a.RREQ,.only.once



AODYV Route Discovery
(ot | wap [Dist

/ E s g Lo
S E 2 I

R F
° \ Reverse Path
) Jandis

@ ©°

* Other nodes create parent pointer
* A node forwards.a.RREQ,.only.once




AODYV Route Discovery
(ot | wap [Dist

* RREP is forwarded via reverse path

Distributed Systems, Edinburgh, 2014



AODV Route Discovery
st [ e [ ist__ (o5t [ wutip [Dist
T — T —>
Forward Path

* RREP is forwarded via reverse path

* Creates a forward.path oo 20



Route expiry

A path expires if not used for a certain time.

If a node sees that a routing table entry has
not been used by this time, it removes this
entry

Even if the path itself is valid
Good for networks with frequent changes
Bad for static and stable networks



Can create loops

Assume C->D link has failed, but A does not
know because the ERR message was lost

Cis now trying to find path to D
A responds since A thinks it has a path
Creates loop: C-E-A-B-C



Sequence numbers in AODV

* |f A has aroute to D, A keeps a sequence
number.

* Aincrements this number periodically: tells
how old the information is



Using sequence numbers

Has a route to D

Needs a rout REQ carries 1
toD [ v -i-i-ioo.- Y i-m .. 2 T >®

Dest seq no. =10 Dest seq no. =7

Y does not reply, but
forwards the RREQ

Seq. no. =15

* Rule: sequence number must increase along
any route

Distributed Systems, Edinburgh, 2014



Sequence number rule avoids loop

(a8 —(c —X>(0)
\ o

5 All seq no’s are for D
(called destination seq.
no.)

* A does not reply, since its sequence no. is less
than that of C



AODV

Routing tables, message does not contain
route

Fresh routes preferred

Old unused routes expire

Stale routes less problematic

Needs sequence numbers to prevent loops

Better for more dynamic, changing
environments



Routing in ad hoc networks

 Reactive protocols: routes are constructed on
demand. No global routing table is maintained.

* More appropriate for networks with high rate

of changes
— Ad hoc on demand distance vector routing (AODV)

— Dynamic source routing (DSR)

* Need flooding
— Inefficient in large networks



Geographical routing: Using location

* Geographical routing uses a node’s
location to discover path to that node.

O Greedy Routing:
o o "o Forward to the neighbor that

IS nearest to the gestination



Geographical routing

* Assumptions:

Nodes know their own geographical location
Nodes know their 1-hop neighbors

Routing destinations are specified
geographically (a location, or a geographical
region)

Each packet can hold a small amount of
routing information.



Sensor network

* Sensors enabled with wireless
— Can communicate with nearby sensors
— Communication to server relatively costly

* Low power, but lots of data
— Not worth sending everything to server

* Try use the data directly inside the network
— In-network distributed computing



Problem: How to find the relevant
data?

e Atourist in a park asks
 “Where is the elephant?”

e Qut of all the sensors/cameras WhICh one is close
to an elephant?

Distributed Systems, Edinburgh, 2014



Data centric routing

Traditional networks try to route to an IP address
Find path to the node with a particular ID

But what if we try to find data, not specific
nodes?

After all, delivering data is the ultimate goal of
routing and networks

Data centric storage
— Storage depends on the data (elephant, giraffe,song...)

Data centric routing (search)
— Route to the data



Distributed Database

* Information Producer
— Can be anywhere in the network
— May be mobile
— Many producers may generate data of the same
type
* User or Information Consumer
— Can be anywhere
— May be many



Distributed Database: Challenges

 Consumer does not know where the producer is,
and vice versa

 Need to search : Must be fast, efficient

Basic methods:
e Push: Producer disseminates data
e Pull: Consumer looks for the data

* Push-pull: Both producer, consumer search for
each-other




Distributed hash tables

Use a hash on the data: h(songl.mp3) =
node#26

Anyone that has songl.mp3 informs node#26

Anyone that needs Songl.mp3 checks with
node#26

Used in peer to peer systems like Chord,
pastry etc



Geographic Hash Tables

* Content based hash gives
coordinates:

— h(lion) = (12, 07)

* Producer sends msg
to (12, 07) by geographic ©
routing and stores data

 Consumer sends msg
to (12, 07) by geographic
routing and gets data

Distributed Systems, Edinburgh, 2014



GHT

 What if there is no sensor at (12, 07) ?

* Use the sensor nearest to it



Fault handling

e What if home node a dies?

* Replicas have a timer that triggers a new check

e A new node becomes home

(replica)

|

(rgplica) (replic'a) (?pllca)

[/

o™

if (home)

(replicag b
(replica)

Distributed Systems, Edinburgh, 2014



GHT

* Advantages

— Simple

— Handles load balancing and faults
* Disadvantages

— Not distance sensitive: everyone has to go to hash
node even if producer and consumer are close

— If a data is queried or updated often, that node
has a lot of traffic — bottleneck



Rumor Routing

* Producer: Send data along a curve or random
walk, leave data or pointers on nodes

* Consumer: Route along another curve or
random walk, hope to meet data or pointer



Rumor routing

Each node maintains a list of events
Adds events as they happen

Agents: Packets that carry events in the
network

— Aggregate events of each node they pass through

Agents move in random walk. From 1-hop

neighbors select one that has not been visited
recently



Event . Node with path to event

O Node o Query Source == Query path to event

Distributed Systems, Edinburgh, 2014



Mobile, Ad-hoc and Sensor network

e A difficult model —least infrastructure, low power
nodes, communication/computation expensive

* Not entirely realistic

 However, it makes least number of assumptons

— useful as a basis for developing distributed protocols/
algorithms

— Which can then be enhanced using available
infrastructure in specific cases



