
What are the important problems for
programming languages?

Philip Wadler, University of Edinburgh
wadler@inf.ed.ac.uk

Part I

Hamming

Richard W. Hamming, 1915–1998
• Los Alamos, 1945.

• Bell Labs, 1946–1976.

• Naval Postgraduate School, 1976–1998.

• Turing Award, 1968. (Third time given.)

• IEEE Hamming Medal, 1987. (First time given.)

What are the important problems?
Hamming started to eat at the Chemistry table.

“I started asking, ‘What are the important problems of your field?’ And
after a week or so, ‘What important problems are you working on?’ And
after some more time I came in one day and said, ‘If what you are doing
is not important, why are you working on it?’ I wasn’t welcomed after
that.

“In the fall, Dave McCall stopped me in the hall and said, ‘Hamming,
that remark of yours got underneath my skin. I thought about it all
summer. I haven’t changed my research, but I think it was well
worthwhile.’ I noticed a couple of months later he was made the head of
the department. I noticed the other day he was a Member of the National
Academy of Engineering. I have never again heard the names of any of
the other fellows.”

— Hamming

You need an attack
“If you do not work on an important problem, it’s unlikely you’ll do
important work. It’s perfectly obvious. . . .

“Let me warn you, ‘important problem’ must be phrased carefully. The
three outstanding problems in physics, in a certain sense, were never
worked on while I was at Bell Labs. By important I mean guaranteed a
Nobel Prize and any sum of money you want to mention. We didn’t work
on (1) time travel, (2) teleportation, and (3) antigravity. They are not
important problems because we do not have an attack. It’s not the
consequence that makes a problem important, it is that you have a
reasonable attack.”

— Hamming

Keep many problems in mind
“Most great scientists know many important problems. They have
something between 10 and 20 important problems for which they are
looking for an attack. And when they see a new idea come up, one hears
them say ‘Well that bears on this problem.’ They drop all the other things
and get after it.

“Now I can tell you a horror story that was told to me but I can’t vouch
for the truth of it. I was sitting in an airport talking to a friend of mine
from Los Alamos about how it was lucky that the fission experiment
occurred over in Europe when it did because that got us working on the
atomic bomb here in the US. He said ‘No; at Berkeley we had gathered a
bunch of data; we didn’t get around to reducing it because we were
building some more equipment, but if we had reduced that data we would
have found fission.’ They had it in their hands and they didn’t pursue it.
They came in second!”

— Hamming

Ambiguity
“Great scientists tolerate ambiguity very well. They believe the theory
enough to go ahead; they doubt it enough to notice the errors and faults
so they can step forward and create the new replacement theory. If you
believe too much you’ll never notice the flaws; if you doubt too much
you won’t get started. It requires a lovely balance. . . . Darwin writes in
his autobiography that he found it necessary to write down every piece of
evidence which appeared to contradict his beliefs because otherwise they
would disappear from his mind. When you find apparent flaws you’ve
got to be sensitive and keep track of those things, and keep an eye out for
how they can be explained or how the theory can be changed to fit them.”

— Hamming

Great thoughts
“I finally adopted what I called ‘Great Thoughts Time.’ When I went to
lunch Friday noon, I would only discuss great thoughts after that. By
great thoughts I mean ones like: ‘What will be the role of computers in
all of AT&T?’, ‘How will computers change science?’

“For example, I came up with the observation at that time that nine out of
ten experiments were done in the lab and one in ten on the computer. I
made a remark to the vice presidents one time, that it would be reversed,
i.e. nine out of ten experiments would be done on the computer and one
in ten in the lab. They knew I was a crazy mathematician and had no
sense of reality. I knew they were wrong and they’ve been proved wrong
while I have been proved right.”

— Hamming

Keep your door open
“I notice that if you have the door to your office closed, you get more
work done today and tomorrow, and you are more productive than most.
But 10 years later somehow you don’t know quite know what problems
are worth working on; all the hard work you do is sort of tangential in
importance. He who works with the door open gets all kinds of
interruptions, but he also occasionally gets clues as to what the world is
and what might be important.”

— Hamming

Generalize
“When using the machine up in the attic in the early days, I was solving
one problem after another after another; a fair number were successful
and there were a few failures. I went home one Friday after finishing a
problem, and curiously enough I wasn’t happy; I was depressed. I could
see life being a long sequence of one problem after another after another.
After quite a while of thinking I decided, ‘No, I should be in the mass
production of a variable product. I should be concerned with all of next
year’s problems, not just the one in front of my face.’ By changing the
question I still got the same kind of results or better, but I changed things
and did important work. I attacked the major problem—How do I
conquer machines and do all of next year’s problems when I don’t know
what they are going to be?”

— Hamming

If I have seen further than others . . .
“How do I do this one so I’ll be on top of it? How do I obey Newton’s
rule? He said, ‘If I have seen further than others, it is because I’ve stood
on the shoulders of giants.’ These days we stand on each other’s feet!

“I suggest that by altering the problem, by looking at the thing
differently, you can make a great deal of difference in your final
productivity because you can either do it in such a fashion that people
can indeed build on what you’ve done, or you can do it in such a fashion
that the next person has to essentially duplicate again what you’ve done.”

— Hamming

Sell yourself
“I have now come down to a topic which is very distasteful; it is not
sufficient to do a job, you have to sell it. ‘Selling’ to a scientist is an
awkward thing to do. It’s very ugly; you shouldn’t have to do it. The
world is supposed to be waiting, and when you do something great, they
should rush out and welcome it. But the fact is everyone is busy with
their own work. You must present it so well that they will set aside what
they are doing, look at what youve done, read it, and come back and say,
‘Yes, that was good.’

“While going to meetings I had already been studying why some papers
are remembered and most are not. The technical person wants to give a
highly limited technical talk. Most of the time the audience wants a
broad general talk and wants much more survey and background than the
speaker is willing to give. As a result, many talks are ineffective.”

— Hamming

Part II

Great Problems of The Past

Turing awards in Programming Languages
1966 Alan Perlis—Algol

1971 John McCarthy—Lisp

1972 Edsger Dijkstra—Algol, Structured Programming

1974 Donald Knuth—“The Art of Computer Programming”

1976 Michael Rabin and Dana Scott—“Finite Automata and their Decision
Problem”

1977 John Backus—Fortran, BNF

1978 Robert Floyd—Parsing, semantics, program verification

1979 Kenneth Iverson—APL

1980 C.A.R. Hoare—Algol, Hoare Logic, CSP

Turing awards in Programming Languages
1983 Dennis M. Ritchie and Kenneth Lane Thompson—C, Unix

1984 Niklaus E. Wirth—Pascal

1991 Robin Milner—LCF, ML, CCS

1996 Amir Pnueli—temporal logic

2001 Ole-Johan Dahl and Kristen Nygarrd—Simula

2003 Alan Kay—Smalltalk

2005 Peter Naur—Algol, BNF

2006 Frances Allen—compilers

2007 Edmund Clarke, E. Allen Emerson, Joseph Sifakis—model checking

2008 Barbara Liskov—CLU

Programming Language Achievement Award
1997 Guy Steele—Scheme, Common Lisp, HPF, Java

1998 Frances Allen—compilers

1999 Ken Kennedy—compilers, parallel computing

2000 Susan Graham

2001 Robin Milner—LCF, ML, CCS

2002 John McCarthy—Lisp

2003 John Reynolds—Gedanken
definitional interpreters, continuations, second-order lambda calculus

Programming Language Achievement Award
2004 John Backus—Fortran, FP

2005 Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides—design
patterns

2006 Ron Cyton, Jeanne Ferrante, Barry Rosen, Mark Wegman, Kenneth
Zadeck—single assignment

2007 Niklaus Wirth—Pascal, Modula 2

2008 Barbara Liskov—CLU

2009 Rod Burstall—Hope
algebraic types, structural induction, dependent types for modules

Part III

Great Problems of Today

Distribution and multicore

Distribution and multicore

Distribution and multicore

Distribution and multicore

Distribution and multicore

Distribution and multicore

Distribution and multicore

Join Calculus
JoCaml, Polyphonic C#

Programming the web

Programming the web

Programming the web

Links

Browser
(HTML, XML,

JavaScript)

Server
(Java, Perl, PHP,
Python, Ruby)

Database
(SQL, XQuery)

response

request query

result

Programming the web

Programming the web

Programming the web

Programming the web

Programming the web

Programming the web

Static and dynamic types

Static and dynamic types

Static and dynamic types

Static and dynamic types—Equality in Haskell
class Eq a where
(==) :: a -> a -> Bool

instance Eq Int where
(==) = eqInt

instance Eq Char where
x == y = ord x == ord y

instance (Eq a, Eq b) => Eq (a,b) where
(u,v) == (x,y) = (u == x) && (v == y)

instance Eq a => Eq [a] where
[] == [] = True
[] == y:ys = False
x:xs == [] = False
x:xs == y:ys = (x == y) && (xs == ys)

Static and dynamic types—Equality in Lisp
(defun (equal x y)
(or
(eq x y)
(and
(consp x)
(consp y)
(equal (car x) (car y))
(equal (cdr x) (cdr y)))))

The next order of magnitude
“When I got interested in the field, the mainstream was probably Fortran
and COBOL and even C was fairly new. The functional programming
pioneers spoke of an order of magnitude improvement in productivity
and I think functional programming has delivered that.

“If you compare Haskell programs to C code or even C++ often, they are
about an order of magnitude smaller and simpler. The same is true for
Erlang, those results are being validated in the industry. Where is the
next order of magnitude coming from? I wish I had an answer to that
question because it’s hard to see almost. When you look at a beautiful
Haskell program, how could this be 10 times shorter? But I think we
need to be asking ourselves that kind of question. If I had a good idea
there, I would spend the rest of my career working on it.”

— John Hughes

The Popularity Contest

The Popularity Contest

The Popularity Contest

Empiricism

Empiricism

Child’s Play—Smalltalk

Child’s Play—Scatch

Child’s Play—Bret Victor’s Alligator Eggs

Child’s Play—Alligator Eggs App

Child’s Play—Alligator Eggs App

Child’s Play—Alligator Eggs Video

Politics

Politics

Politics

