What are the important problems for

programming languages?

Philip Wadler, University of Edinburgh

wadler@inf.ed.ac.uk

Part 1

Hamming

Richard W. Hamming, 1915-1998
e [.os Alamos, 1945.
e Bell Labs, 1946-1976.
e Naval Postgraduate School, 1976—1998.
e Turing Award, 1968. (Third time given.)

e [EEE Hamming Medal, 1987. (First time given.)

What are the important problems?

Hamming started to eat at the Chemistry table.

“I started asking, “What are the important problems of your field?” And
after a week or so, “What important problems are you working on?” And
after some more time I came in one day and said, ‘If what you are doing
1s not important, why are you working on 1t?” I wasn’t welcomed after
that.

“In the fall, Dave McCall stopped me in the hall and said, ‘Hamming,
that remark of yours got underneath my skin. I thought about it all
summer. [haven’t changed my research, but I think it was well
worthwhile.” I noticed a couple of months later he was made the head of
the department. I noticed the other day he was a Member of the National
Academy of Engineering. I have never again heard the names of any of

the other fellows.”

— Hamming

You need an attack

“If you do not work on an important problem, it’s unlikely you’ll do
important work. It’s perfectly obvious. ...

“Let me warn you, ‘important problem’ must be phrased carefully. The
three outstanding problems in physics, in a certain sense, were never
worked on while I was at Bell Labs. By important I mean guaranteed a
Nobel Prize and any sum of money you want to mention. We didn’t work
on (1) time travel, (2) teleportation, and (3) antigravity. They are not
important problems because we do not have an attack. It’s not the
consequence that makes a problem important, it is that you have a
reasonable attack.”

— Hamming

Keep many problems in mind

“Most great scientists know many important problems. They have
something between 10 and 20 important problems for which they are
looking for an attack. And when they see a new idea come up, one hears
them say ‘Well that bears on this problem.” They drop all the other things
and get after it.

“Now I can tell you a horror story that was told to me but I can’t vouch
for the truth of it. I was sitting in an airport talking to a friend of mine
from Los Alamos about how it was lucky that the fission experiment
occurred over in Europe when it did because that got us working on the
atomic bomb here 1n the US. He said ‘No; at Berkeley we had gathered a
bunch of data; we didn’t get around to reducing it because we were
building some more equipment, but if we had reduced that data we would
have found fission.” They had it in their hands and they didn’t pursue it.

"’

They came in second

— Hamming

Ambiguity

“Great scientists tolerate ambiguity very well. They believe the theory
enough to go ahead; they doubt it enough to notice the errors and faults
so they can step forward and create the new replacement theory. If you
believe too much you’ll never notice the flaws; if you doubt too much
you won'’t get started. It requires a lovely balance. ... Darwin writes in
his autobiography that he found it necessary to write down every piece of
evidence which appeared to contradict his beliefs because otherwise they
would disappear from his mind. When you find apparent flaws you’ve
got to be sensitive and keep track of those things, and keep an eye out for
how they can be explained or how the theory can be changed to fit them.”

— Hamming

Great thoughts

“I finally adopted what I called ‘Great Thoughts Time.” When I went to
lunch Friday noon, I would only discuss great thoughts after that. By
great thoughts I mean ones like: ‘What will be the role of computers in

all of AT&T?’, ‘How will computers change science?’

“For example, I came up with the observation at that time that nine out of
ten experiments were done in the lab and one in ten on the computer. I
made a remark to the vice presidents one time, that it would be reversed,
1.e. nine out of ten experiments would be done on the computer and one
in ten in the lab. They knew I was a crazy mathematician and had no
sense of reality. I knew they were wrong and they’ve been proved wrong

while I have been proved right.”

— Hamming

Keep your door open

“I notice that if you have the door to your office closed, you get more
work done today and tomorrow, and you are more productive than most.
But 10 years later somehow you don’t know quite know what problems
are worth working on; all the hard work you do 1s sort of tangential in
importance. He who works with the door open gets all kinds of
interruptions, but he also occasionally gets clues as to what the world 1s
and what might be important.”

— Hamming

Generalize

“When using the machine up in the attic in the early days, I was solving
one problem after another after another; a fair number were successful
and there were a few failures. I went home one Friday after finishing a
problem, and curiously enough I wasn’t happy; I was depressed. I could
see life being a long sequence of one problem after another after another.
After quite a while of thinking I decided, ‘No, I should be in the mass
production of a variable product. I should be concerned with all of next
year’s problems, not just the one in front of my face.” By changing the
question I still got the same kind of results or better, but I changed things
and did important work. I attacked the major problem—How do I
conquer machines and do all of next year’s problems when I don’t know
what they are going to be?”

— Hamming

If I have seen further than others ...

“How do I do this one so I'll be on top of it? How do I obey Newton’s
rule? He said, ‘If I have seen further than others, it is because I’ve stood
on the shoulders of giants.” These days we stand on each other’s feet!

“I suggest that by altering the problem, by looking at the thing
differently, you can make a great deal of difference in your final
productivity because you can either do it in such a fashion that people
can indeed build on what you’ve done, or you can do it in such a fashion
that the next person has to essentially duplicate again what you’ve done.”

— Hamming

Sell yourself

“I have now come down to a topic which is very distasteful; it is not
sufficient to do a job, you have to sell it. ‘Selling’ to a scientist is an
awkward thing to do. It’s very ugly; you shouldn’t have to do it. The
world 1s supposed to be waiting, and when you do something great, they
should rush out and welcome it. But the fact is everyone is busy with
their own work. You must present it so well that they will set aside what
they are doing, look at what youve done, read it, and come back and say,

‘Yes, that was good.’

“While going to meetings I had already been studying why some papers
are remembered and most are not. The technical person wants to give a
highly limited technical talk. Most of the time the audience wants a
broad general talk and wants much more survey and background than the
speaker 1s willing to give. As a result, many talks are ineffective.”

— Hamming

Part 11

Great Problems of The Past

Turing awards in Programming Languages

1966
1971
1972
1974
1976

1977
1978
1979
1980

Alan Perlis—Algol

John McCarthy—Lisp

Edsger Dijkstra—Algol, Structured Programming
Donald Knuth—“The Art of Computer Programming”

Michael Rabin and Dana Scott—“Finite Automata and their Decision
Problem”

John Backus—Fortran, BNF
Robert Floyd—Parsing, semantics, program verification
Kenneth Iverson—APL

C.A.R. Hoare—Algol, Hoare Logic, CSP

Turing awards in Programming Languages

1983
1984
1991
1996
2001
2003
2005
2006
2007
2008

Dennis M. Ritchie and Kenneth Lane Thompson—C, Unix

Niklaus E. Wirth—Pascal

Robin Milner—LCFE, ML, CCS

Amir Pnueli—temporal logic

Ole-Johan Dahl and Kristen Nygarrd—Simula

Alan Kay—Smalltalk

Peter Naur—Algol, BNF

Frances Allen—compilers

Edmund Clarke, E. Allen Emerson, Joseph Sifakis—model checking

Barbara Liskov—CLU

Programming Language Achievement Award
1997 Guy Steele—Scheme, Common Lisp, HPF, Java
1998 Frances Allen—compilers
1999 Ken Kennedy—compilers, parallel computing
2000 Susan Graham
2001 Robin Milner—LCF, ML, CCS
2002 John McCarthy—Lisp

2003 John Reynolds—Gedanken
definitional interpreters, continuations, second-order lambda calculus

Programming Language Achievement Award
2004 John Backus—Fortran, FP

2005 Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides—design
patterns

2006 Ron Cyton, Jeanne Ferrante, Barry Rosen, Mark Wegman, Kenneth
Zadeck—single assignment

2007 Niklaus Wirth—Pascal, Modula 2
2008 Barbara Liskov—CLU

2009 Rod Burstall—Hope
algebraic types, structural induction, dependent types for modules

Part 111

Great Problems of Today

Distribution and multicore

Distribution and multicore

Distribution and multicore

Distribution and multicore

Distribution and multicore

Distribution and multicore

Programming
Erlang c.oms

Joe Armstrong

Distribution and multicore

Join Calculus
JoCaml, Polyphonic C#

P = z() 7 @)
def D in P J|J
P|P

Programming the web

DATABASE
SERVER
APPLICATION

WEB
SERVICES

ONLINE
SCHEDULING

INTRANET

Programming the web

Programming the web

Browser
(HTML, XML,
JavaScript)

request

Links

¢

>

response

Server
(Java, Perl, PHP,
Python, Ruby)

query

result

Database
(SQL, XQuery)

Programming the web

iData For The World Wide Web

Programming Interconnected Web Forms

Rinus Plasmeijer and Peter Achten

Software Technology, Nijmegen Institute for Computing and Information Sciences,
Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, Netherlands

counterIData :: IDatald Int — IDataFun Int

counterIData iDatald i = mkIData iDatald i ibm

where ibm = { toView = An v — useOldView (n,down,up) v
, updView = A_ v — updCounter v
, fromView =A_ (n,_,_) —n

resetView = Nothing |}
(up,down) = (LButton (defpixel / 6) "+ LButton (defpixel / 6) "-)

updCounter :: Counter — Counter

updCounter (n,Pressed,_) = (n - 1,down,up)
updCounter (n,_,Pressed) = (n + 1,down,up)
updCounter noPresses = noPresses

use0ldView new (Just old)= old
uselldView new Nothing = new

Programming the web

Notions of Computation and Monads
EuGENIO MoOGGI*

Department of Computer Science, University of Edinburgh, Edinburgh EH9 3JZ, UK

T34 —FT , 724 T4, T4 T Ty

T*A » T'A T4

Programming the web

FUNCTIONAL PEARLS
[ABORTED] A trail told by an idiom

Conor McBride

1 Introduction

Nobody likes their programs to be full of sound and fury, signifying nothing. Ab-
straction is the weapon of choice in the war on wanton waffle. This paper is about
an abstraction which I find rather handy. It’s a weaker variation on the theme of a
monad, but it has a more functional feel. I call it an idiom:

infix] 9 (%)
class Idiom i where
idi X —1X
(%)) = i(s—t)—is—1it — pronounced ‘apply’

Programming the web

The Essence of Form Abstraction”™

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop

School of Informatics, University of Edinburgh

module type FORMLET = sig
. : include Idiom
module type Idiom = sig val wml - 2ml — unit t
val text : string — wunitl 1
val tag : tag — attrs — at — a i
val input : string 1

val run @ a t — zml x (env — «a)

type a ¢

val pure : a — a t

val (®) : (a —= B)t - at — Gt
end

end

Fig. 4. The idiom and formlet interfaces

Programming the web

let date_formlet : date formlet = formlet
<div>
Month: {input_int = month}
Day: {input_int = day}
</div>
yields make_date month day

let travel_formlet : (string X date x date) formlet =
formlet
<#>
Name: {input = name}
<div>
Arrive: {date_formlet = arrive}
Depart: {date_formlet = depart}
</div>
{submit "Submit"}
</#>
yields (name, arrive, depart)

Programming the web

The IntelliFactory WebSharper™ Platform

Writing good web applications is not an easy task today. It requires a mastery of numerous languages (JavaScript, HTML,
C55), and an acute awareness of existing standards and browser implementation quirks. Poor debugging tools, and the lack
of compositionality and component reuse in the multi-tiered, multi-language web environment compound the problem even

more.
Seamless ASP.NET == —— Functional Reactive
Integration ' Coding

Plug your Use powerful F#
WebSharper™ asynchronous
dpplications into constructs and

existing ASP.NET first-class events with

sites and deploy via vour client

[151 applications!

Extensions Formlets o i

Develop applications Create interactive - —_——
that use any forms with validation | — — CIR|
JavaScrlpt—bgaed using F'ype—s?fe - :

technology via code in just lines! ot 1

WebSharper™ T ::f: .
bindings! S R

Static and dynamic types

Tiobe Programming Paradigm Index: Type system

725 -
700 -
B7 5 -
B5.0 -
B25 -
800 -
575 -
550 -
525 -
500
47 5
450
42 5
400 -
375 -
350 -
325 -
300 -
27 5 -

Language Paradigms Used (%)

2002 2003 2004 2005 2006 2007 20082 2009 201
Dates

— statically typed = dynamically typed

Static and dynamic types

Blame for All

Amal Ahmed', Robert Bruce Findler?, Jacob Matthews?, and Philip Wadler*

I' Indiana University
2 Northwestern University
3 Google
4 University of Edinburgh

o>(A' =B A =B vi— oA (B <= B) (v ((A<=A"P x))

o> (AX.1)A— 6. X =Apt
o> (B<=VX.A)P v— o> (B<A[X :=«])P (v *)
o (VX.B<=A)vi— o>AX.(B<=A)P v

Static and dynamic types

o> (AX.t)A — 0. X :=Apt if X ¢ dom(o)
o> (B<=VX.A)P vi— o> (B<A[X :=«[)P (v «)
o (VX.B<=A)vi— o> AX. (B<=A)P v if X ¢ dom(o)
o> (x < G)P vis?G —— o> true if G#X
ob(x< G)’ vis?H —— orfalse ifG#Xand G#H

op (<= X)P vis?H —— blameg
o (Ax:A.t) v — obt[x =V
ob{A' =B <A =B vi— oohi:A . (B <= B) (v ({A=A"P x))
o (x =*) vi— o>V
or(t<=1)/vi— oV

o> (X < X)Pv—— o>V

CP(A—=B<=x)vi— o {(A—=B<=*x—x (x> x=*x)ly ifA—B#x—*

)
)
)
or(x<=A—=B)fvi—or{(x=x—x)Ff (x—=x<=A—B)Pvy ifA—B#x—x
)
o {G<=+x (x<=G)Pvi— o>V

)

>(H <= %9 (x = G)P v — blameg iftG+#H

Static and dynamic types—Equality in Haskell

class Eg a where
(==) :: a —> a —> Bool

instance Eg Int where
(==) = eqglnt

instance Eg Char where
X ==y = ord x == ord vy

instance (Egq a, Eg b) => Eg (a,b) where

(u,v) == (X,¥) = (u == x) && (v == Yy)
instance Eg a => Eqgq [a] where

[] == T[] = True

[] == y:ys = False

X:Xs == [] = False

X:1XS == y:VS = (x == vy) && (xs == ys)

Static and dynamic types—Equality in Lisp

(defun (equal x V)
(or

(eq x y)

(and
(consp Xx)
(consp y)
(equal (car x) (car vy))
(equal (cdr x) (cdr y)))))

The next order of magnitude

“When I got interested in the field, the mainstream was probably Fortran
and COBOL and even C was fairly new. The functional programming
pioneers spoke of an order of magnitude improvement in productivity
and I think functional programming has delivered that.

“If you compare Haskell programs to C code or even C++ often, they are
about an order of magnitude smaller and simpler. The same is true for
Erlang, those results are being validated in the industry. Where 1s the
next order of magnitude coming from? I wish I had an answer to that
question because it’s hard to see almost. When you look at a beautiful
Haskell program, how could this be 10 times shorter? But I think we
need to be asking ourselves that kind of question. If I had a good i1dea
there, I would spend the rest of my career working on it.”

— John Hughes |

The Popularity Contest

Tiobe Programming Community Index

275 1

25.0 -

13
|
n

- bl

= []

h [|
-

15.0 -

12.5 1

Mormalized fraction of total hits (%)

%
i?

|
in

i

-.\'\f'_.f" ™

j/-"\./"v“"*f‘-“-—

2002 2003 2004 2005 2006
Dates

2007 2008 2009 2011

= Java =— PHF — (Visual) Basic Pythion
—_— = C++ C# — Pearl

Javascript

= Rluby

The Popularity Contest

Posilion Position Dela in Posilion | Programming Language Rafings Delta Stalus
Nov 2009 | Nov 2008 Nov 2009 | Nov 2008
1 1 Java 18373% | -193% | A
2 2 C 17.315% | +2.04% | A
3 5 11 PHP 10176% | +124% | A
4 3 1 Gt 10.002% | -0.36% | A
5 4 1 (Visual) Basic BA71% | -1.10% | A
6 7 1 ca 5346% | +1.32% | A
7 6 1 Python 4672% | 047% | A
8 g L] Perl 3490% | -0.39% | A
g 10 1 JavaScript 2916% | 0.01% | A
10 1 1 Ruby 2404 | 047% | A
11 8 (23} Delphi 2127% | 188% | A
12 13 1 PL/SQL 0.908% | -003% | A
13 33 | TETTTTEEET | objectivec 0.893% | +0.74% | A
14 14 SAS 0.816% | +0.09% | A
15 16 1 Pascal 0.654% | +0.14% | A-
16 15 1 ABAP 0.643% | +0.07% | A-
17 21 1111 Lisp/Scheme 0.618% | +0.15% | B
18 22 11Tt MATLAB 0.611% | +015% | B
19 20] Lua 0544% | +0.07% | B
20 12 Hi o 0.543% | -090% | B

The Popularity Contest

21 ActionScript 0.519% 36 Prolog 0.234%
22 COBOL 0.430% ar MAT-5 0.234%
23 Transact-SQL 0.412% 38 Tl Tk 0.221%
24 FoxPro/xBase 0.379% 39 Focus 0.209%
25 Fortran 0.376% 40 LabWindows/CVI 0.193%
26 Logo 0.361% 41 Haskell 0.183%
27 Scratch 0.346% 42 PL/ 0177%
28 Alice 0.329% 43 JavaFX Script 0.176%
28 Ada 0.305% 44 MAX/MSP 0.161%
30 S-lang 0.292% 45 LabVIEW 0.157%
31 RPG (CS/400) 0.285% 46 Falcon 0.156%
32 Erlang 0.261% 47 Groovy 0.152%
33 PowerShell 0.259% 48 Modula-3 0.146%
3 Scala 0.244% 49 Forth 0.144%
33 Awk 0.243% a0 Smalltalk 0.135%

Empiricism

Click to

LOOK INSIDE! Java Generics and Collections (Paperback)

by M Naftalin (Author), P Wadler (Author) Qusniin
YAOAOAOK [(Scustomer reviews) @ Add to Shopping Basket

% Toe ——

RRP: £26-99 or
price: £14.43 & this item Delivered FREE in the UK with Super Saver Sian in to turn on 1-Click ordering.
i R Delivery. See details and conditions))
];;_1 1 You Save: £12.56 (47%) | AddtoWishlist |v |
] 4
- Ao In stock. g
(“]-t'rl("l 1(“ b Dispatched from and sold by Amazon.co.uk. Gift-wrap available. More Buying Choices
aved Ol ticans
B 38 used & new from £12.85
. O Want guaranteed delivery by 1pm Wednesday, November 25? Order it in the nexto | _ ——
) -) H t e
HpE i hours and 43 minutes, and choose Express Delivery at checkout. See Details Ve one to se Sellypure hess

29 new from £12.85 9 used from £13.69

Share your own customer imadges

Search inside this book Other Editions: RRP: Our Price: Other Offers:
Paperback 2 used & new from £30.98
oL . 12 Days of Christmas Sale in Books
Y get up to 65% off some of our top

-
Sale titles. Shop now
» See more product prometions

Special Offers and Product Promotions

® [lluminate your book with the innovative Philips LED reading light--exclusive to Amazon.co.uk. Shop now.

Frequently Bought Together

e, e "“; — Price For All Three: £48.88

ﬁ Add all three to Basket |

Show availability and delivery details

This item: Java Generics and Collections by M Naftalin
Java Concurrency in Practice by Brian Goetz
Effective Java: Second Edition by Joshua Bloch

Empiricism

ick 10 LOOK INSIDE! Java Generics and Collections (Paperback) —
2 ~ Maurice Maftalin = (Auther), Philip Wadler [(Author) Quantity:
PR e . Key Phrases: collections framework, substitution principle, generic client, Principle of Truth
loshua Bloch, Principle of Indecent Exposure {more...) @ Add to Shopping Cart]
Todrdrdeds v (23 customer reviews) =
|:IS;:-FIF-I;é - $a408 e Sign in to turn on 1-Click ordering.

ar

Price: $23.09 & eligible for FREE Super Saver Shipping on orders over

L 7d i $25. Details G@I Add to Cart with I
T e You Save: $11,90 (34%)
LI t-I_lLI 1(_ ‘3' Amazon Prime Frea Trial

aearel ol tians In Stock. required. Sign up when you
Ships from and sold by Amazon.com. Gift-wrap available. check out. Learn Hore

CIREILLT " Foiy Wil
Want it delivered Wednesday, November 257 Order it in the next & hours and 13 L Add to Wish List J
minutes, and choose One-Day Shipping at checkout. Details
Share your own customer imadges 33 new from $12.08 17 used from $16.93 Express Checkout with PayPhrase
Search inside this boak @ i == » 'i)
Formats Amazon Price Mew from Used from What's this? | Create PayPhrass

Kindle Edition, February 9, 2009 $20.00 - - More Buying Choices
Paperback, September 30, 2006 2309 1908 §16.93

50 used & new from $16.93

Unknown Binding, December 31, 2006 - - -
Hawve one to sell? | Sell yours here

=] Share with Friends

Like this book? Find similar titles from O'Reilly and Partners in our O'Reilly Bookstore.

Best Value

Buy Java Generics and Collections and get Pragmatic Project Automation: How to Build, Deploy, and Monitor Java Apps at
an additional 5% off Amazon.com's everyday low price.

S - Buy Together Today: $41.87
; .-\-'ﬁ_:-l: =,
N 17 - - @ Add both to Cart i

- Show availability and shipping details

Child’s Play—Smalltalk

Child’s Play—Scatch

0606 FortuneCuokiE— Scratch J
r ~
BE;E,.‘A:_[‘U '[‘[l NewJ l DpenJ l SaveJ l Save As J l Share! J l Undo J [LanguageJ l Extras J l Want Help? J FortuneCookie @

Motion Control

Looks Sensing

Sound Numbers

Pen ¥ariables

mouse x

mouse y

go to x:]
I: B secs

key pressed? forever

mouse down?

if . touc

touching z Eﬁadcast

touching color [l ?

color [is owver | 7

-

distance to d

Eﬁadcast b

distance to

-

distance to dra

Eﬁadcast no_f

reset timer

timer

touching fortun e |2 e

- - - l — =
rnouse xi -269
set got_cookie to [yJ [HJ [@ J rouse w200

E;adcast f

loudness

loud?

sensor value

N kay up : pressed? T » -

fortunecookie cheetos

=

sensor button pre

-

key r pressed?
change y by

TouWon TouLost

=

key left arr pressed?

change x by B9

=
|

key right : pressed?

change = by

Child’s Play—Bret Victor’s Alligator Eggs

Child’s Play—Alligator Eggs App

Iligator Eggs

Child’s Play—Alligator Eggs App

Alligator Eggs
File Edit Insert View Operations

_af
q

C
|
-

®
C

O

H
B S S

PP
P s = I D
HHH |
EEN EEN

th %t

1
x

Child’s Play—Alligator Eggs Video

Alligators, revisited

- e

-r 0:00/0:00 «fi =0 E9

An implementation of Bret Victor's Oh no! Alligators! by Torsten Strobl.

Politics
'O LIKE

THERWER T
TAKE HIS Motier
AP QVE (T ~ .~

To YU,

Politics

"To explore programming language concepts and
< S ! G P ‘ A N tools focusing on design, implementation and
efficient use."

Home | Membership | Conferences | Awards | What's New

Resources | HotlLinks | Conference Calendar | Student Information | Contact Us

SIGPLAN Executive Committee 2009-2012

The Executive Committee is elected every 3 years by .
the members of ACM SIGPLAN. Ex-officio members
Elected members| e ACM Program Director: Ginger Ignatoff
e Editors of SIGPLAN Newsletters:
e Chair: Philip Wadler 0 SIGPLAN Information Director: Jack
e Vice Chair: Graham Hutton Davidson
e Secretary: Andrew P. Black 0 SIGPLAN Notices: Mark Bailey
e Treasurer: Cristina Cifuentes o FORTRAN Forum: Ian Chivers
* Members at Large: ® ACM TOPLAS Editors:
O Matthew Flatt o Kathryn McKinley
© Dan Grossman o Keshav Pingali
© Tony Hosking ® Steering Committee Chairs
o Erez. Pe’;rank o FOOL
© Be_mamm Zorn _ Christopher Stone
e Past Chair: Kathleen Fisher o Haskell
Daan Leijen
o ICFP
Ralf Hinze

Politics

The ACM Special Interest Group on Software
Engineering provides a forum for computing

S I G O F T professionals from industry, government and

academia to examine principles, practices,
and new research results in software
engineering.

The Impact Project: Publications

SFECIAL IMTEREST GROLUP O SOFTWAHE E NENEEFRING

2008

e Dieter Rombach, Marcus Ciolkowski, Ross Jeffery, Oliver Laitenberger, Frank McGarry, Forrest
Shull. Impact of research on practice in the field of inspections, reviews and walkthroughs:
learning from successful industrial uses. In ACM SIGSOFT Software Engineering Notes Volume 33,
Issue 6 (November 2008). 26-35.

* Wolfgang Emmerich, Mikio Aoyama, Joe Sventek. The Impact of Research on the Development of
Middleware Technology. ACM Trans. Softw. Eng. Methodol. 17, 4 (Aug. 2008), 1-48.

e Leon]. Osterweil, Carlo Ghezzi, Jeff Kramer, Alexander L. Wolf. Determining the Impact of

Software Engineering Research on Practice . IEEF Computer, Volume 41, Issue 3, March 2008
Page(s):39 - 49,

2003

¢ Barbara G. Ryder, Mary Lou Soffa, "Influences on the design of exception handling ACM SIGSOFT
project on the impact of software engineering research on programming language design". ACM
SIGSOFT Software Engineering Notes, Volume 28 , Issue 4 (July 2003) - pdf

