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Last Lecture ....

* Colour mapping

- distinct regions identified by colour separation

- transitions shown by colour gradients

- eye separates coloured areas into distinct regions
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Contouring

* Contours explicitly construct the boundary between
these regions

* Boundaries correspond to:

- lines in 2D

- surfaces in 3D (known as isosurfaces)

- of constant scalar value
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Example : contours

- lines of constant pressure on a weather map (isobars)

- surfaces of constant density in medical scan (isosurface)

- “is0” roughly means equal / similar / same as
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@ Contours
* Contours are boundaries between regions

- they DO NOT just connect points of equal value

- they DO also indicate a TRANSITION from a value below
the contour to a value above the contour
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2D contours

* Data : 2D structured grid of scalar values

0 1 1 3 2

* Difficult to visualise transitions in data

- use contour at specific scalar value to highlight transition

o
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2D contours : line generation

1 3%/6"\\ 3

3 7 9 7 3
* Select scalar value
- corresponds to contour line 2 \7 8 6 / 2
- i.e. contour value, e.g. 5 (right) -/

1 2 3 4 3

* Interpolate contour line
through the grid corresponding to this value
- must interpolate as scalar values at finite point locations
- true contour transition may lie in-between point values
- simple linear interpolation along grid edges
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‘Simplex’
shape

. = inside contour

O = outside contour

\

2D contours : ambiguity

No vertices not connected by
a shared edge.
— No ambiguous cases.

Two vertices not connected
by a shared edge.
— Two ambiguous cases.

Three vertices not connected
by a shared edge.
— Three ambiguous cases.

* Ambiguous cases in contouring

- Q: Are these points connected across the cell (join) or

not (break) ?
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2D contours : ambiguity

Two vertices not connected Three vertices not connected
by a shared edge. by a shared edge.
— Two ambiguous cases. — Three ambiguous cases.

* Alternative contouring of same data

- hence ambiguity
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Methods of Contour Line Generation

* Approach 1 : Tracking /4,\\
I

- find contour intersection with an edge

- track it through the cell boundaries

- if it enters a cell then it must exit via one of the boundaries

- track until it connects back onto itself or exits dataset boundary

- Advantages : produces correctly shaped line
- Dis-advantages : need to search for other contours
* Approach 2 : Marching Squares Algorithm

- works only on structured data

- contour lines are straight between edges (approximation)
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Marching Squares Algorithm

* Focus : intersection of contour and cell edges

- how the contour passes through the cell
- where it actually crosses the edge is easy to calculate

* Assumption: a contour can pass through a cell in
only a finite number of ways

- cell vertex is inside contour if scalar value > contour
outside contour if scalar value < contour
- 4 vertices, 2 states (in or out)
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Marching Squares

No intersection. Contour intersects Ambiguous case.
edge(s)

®0
® O
®0

/

/

/
AN

| | |
e 2% =16 possible cases for each square

- small number so just treat each one separately
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MS Algorithm Overview
O o O
. . ? \
* Main algorithm ¢ |
1. Select a cell O O @ ®

2. Calculate inside/outside state for each vertex
3. Look up topological state of cell in state table

 determine which edge must be intersected (i.e. which of the 16 cases)

4. Calculate contour location for each intersected edge

5.Move (or march) onto next cell
- until all cells are visited GOTO 2

* Overall : contour intersections for each cell
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MS Algorithm - notes

® o O .Q\O
O\QQ o O o

* Intersections for each cell must be merged to form complete
contour

- cells processed independently
- further “merging” computation required
- disadvantage over tracking (continuous tracked contour)

* easy to implement (also to extend to 3D)
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MS : Dealing with ambiguity ?

Spll Ambiguous case.

t @ O
\N
\N
/ \
Join ® /’\‘
/
7

* Choice independent of other choices

- either valid : both give continuous and closed contour
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Example : Contour Line Generation

I:I No intersection.

: Contour intersects 1 edge
O
o0
o Contour intersects 2 edges
e

N\ .
E a Ambiguous case.
N\

* 3 main steps for each cell

- here using simplified summary model of cases
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& Step 1 : classify vertices

Contour intersects 1 edge .l..

Contour intersects 2 edges ....

KIALAL]

Ambiguous case. Contour value
=5
* Decide whether each vertex is inside or outside
contour

Taku Komura Contouring Scaler Data 17




Visualisation : Lecture 6

Step 2 : identify cases

0

No intersection. 1

2

Contour intersects 2 edges

1
Ambiguous case. Contour value =5

Ij Contour intersects 1 edge

* Classify each cell as one of the cases
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No intersection.

Contour mtersects 1 edge

Contour intersects 2 edges

Ambiguous case.

KILAL]

Step 3 : interpolate contour intersections

0 | |

1

e

Split

* Determine the edges that are intersected

- compute contour intersection with each of these edges
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Ambiguous contour
0 | |

No intersection. 1

Contour mtersects 1 edge

Contour intersects 2 edges

Ambiguous case. /

Join

KA

* Finally : resolve any ambiguity

- here choosing “join” (example only)
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Marching Squares Implementation

* Select a cell

- Calculate inside/outside state for each vertex

- Create an index by storing binary state of each vertex in a
separate bit

- Use index to lookup topological state of cell in a case table

- Calculate contour location (geometry) for each edge via
interpolation

- Connect with straight line

* March to next cell (order/direction non-important)
* Need to merge co-located vertices into single polyline
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A slice through the head

(with colour mapping added)

2D : Example contour

A Quadric function.
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3D surfaces : marching cubes

* Extension of Marching Squares to 3D

- data : 3D regular grid of scalar values
- result : 3D surface boundary instead of 2D line boundary
- 3D cube has 8 vertices » 28 = 256 cases to consider

- use symmetry to reduce to 15

°* Problem : ambiguous cases

- cannot simply choose arbitrarily as choice is determined
by neighbours

- poor choice may leave hole artefact in surface
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Marching Cubes - cases

0 1 2
v8 a7 v7
el e12
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Figure 4. Cube Numbering.
] 13T

* Ambiguous cases
- 3,6,10,12,13 — split or join ?

s

Figure 3. Triangulated Cubes.
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Solution to ambiguous cases

* Marching Tetrahedra

- use tetrahedra instead of cubes
- no ambiguous cases
- but more polygons (triangles now)

- need to choose which diagonal of cube to split to form
tetrahedra

- constrained by neighbours or bumps in surface

1sosurface =
2.5
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Alternative solutions

* Analysis of neighbours [Neilson '91]

- decide whether to split or join
- analysis of scalar variable across face
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Results : isosurfaces examples

isosurface of Electron potential isosurface of flow density

- white outline shows bounds of 3D data grid
- surface = 3D contour (i.e. isosurface) through grid

- method : Marching Cubes
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Problems with Marching Cubes

* Generates lots of polygons

- 1-4 triangles per cell intersected
~ many unnecessary

- e.g. co-planar triangles
- lots of work extra for rendering!

- As with marching squares separate

merging required \
- need to perform explicit search
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Dividing Cubes Algorithm

* Marching cubes

- often produces more polygons than pixels for given
rendering scale

- Problem : causes high rendering overhead

* Solution : Dividing Cubes Algorithm

- draw points instead of polygons (faster rendering)
- Need 1: efficient method to find points on surface
2: method to shade points
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Example : 2D divided squares for 2D
lines

Find pixels that intersect
contour
- Subdivide them
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2D “Divided Cubes” for lines

Find pixels that intersect line
- Subdivide them ( usually in
2X2)

- Repeat recursively
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2D “Divided cubes” for lines

Find pixels that intersect line
- Subdivide them
- Repeat recursively
until screen resolution reached

- Calculate mid-points
- Draw line
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Extension to 3D

* Find voxels which intersect surface

* Recursively subdivide
- When to stop?
* Calculate mid-points of voxels

* Project points and draw pixels
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Drawing divided cubes surfaces

* surface normal for lighting calculations
- interpolate from voxel corner points
* problem with camera zoom

- Ideally dynamically re-calculate points
- not always computationally possible

* smooth looking surface

- represented by rendered point cloud
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Dividing Cubes : Example

50,000 points

when sampling less
than screen resolution
structure of surface can
be seen

Problem : algorithm is
patented

see : dcubes.tcl
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Contouring available in VTK

* Single object : vtkContourFilter

- can accept any dataset type  (cf. pipeline multiplicity)
- input tetrahedra cells
- Marching tetrahedra used
- Input structured points
- Marching cubes used
- input triangles
- marching triangles used [Hilton '97]
* Also vtkMarchingCubes object

- only accepts structured points, slightly faster
- problems with patent issues  (MC is patented)
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Summary

* Contouring Theory

- 2D : Marching Squares Algorithm
- 3D : Marching Cubes Algorithm [Lorensen '87]

- marching tetrahedra, ambiguity resolution
- limited to regular structured grids

- 3D Rendering : Dividing Cubes Algorithm [Cline '88]

* Contouring Practice

- examples and objects in VTK

Next lecture : Advanced Data Representation

Taku Komura Contouring Scaler Data 37




