
Taku Komura Systems Architecture 1

Visualisation : Lecture 3

Systems Architecture for
Visualisation

Visualisation – Lecture 4

Taku Komura

Institute for Perception, Action & Behaviour
School of Informatics

Taku Komura Systems Architecture 2

Visualisation : Lecture 3

Last lecture
● Basics of Computer Graphics

– as we need them for visualisation
— object representation
— object illumination

VTK cone example

Taku Komura Systems Architecture 3

Visualisation : Lecture 3

This lecture
● The Visualisation Pipeline

– systems architecture for visualisation
—outline
—pipeline connections
—pipeline execution

Taku Komura Systems Architecture 4

Visualisation : Lecture 3

Visualisation Pipeline - Overview

● Three main elements
– objects to represent data (data objects)
– objects to represent processes (process objects)
– direction of data flow

— indicates data dependencies
— synchronisation required to keep pipeline up to date

Taku Komura Systems Architecture 5

Visualisation : Lecture 3

Visualisation Pipeline – Objects 1
● Data Objects

– represent data (internally) + methods to access it
– data modification only via formal object methods
– additional data properties for rendering

– Example : mesh
— vertices, connectivity (basic)
— polygons, normals at vertices or faces (additional)

Taku Komura Systems Architecture 6

Visualisation : Lecture 3

Visualisation Pipeline – Objects 2
● Process Objects

– objects that operate on input data to generate output data
– data transformation
– source objects

— generate data from local parameters (e.g. quadric) or external source
(e.g. file)

– Data analyser
– Filter objects
– mapper objects

— transform data into graphic primitives (for display or file output)

Taku Komura Systems Architecture 7

Visualisation : Lecture 3

Data Analyser

Data Analysis: data are prepared for visualization
● applying a smoothing filter,
● interpolating missing values,
● or correcting erroneous measurements
 usually computer-centered, little or no user interaction.

Taku Komura Systems Architecture 8

Visualisation : Lecture 3

Data Filtering

Filter Objects: selection of data portions to be
visualized -- usually user-centered.

Taku Komura Systems Architecture 9

Visualisation : Lecture 3

Mapping and Rendering

Mapper Objects : data are mapped to geometric
primitives (e.g., points, lines) and their attributes
(e.g., color, position, size);
 Rendering: geometric data are transformed to
image data.

Taku Komura Systems Architecture 10

Visualisation : Lecture 3

Visualisation Pipeline - Overview

● The modules do not have to necessarily
follow this order

● Especially, the Data analysis and Filtering
can appear several times

Taku Komura Systems Architecture 11

Visualisation : Lecture 3

An example : visualising a quadric
● Quadric

– second order surface function in ℝ3 (more than 2 variables in def.)
–

– co-efficients : a,b,c,d,e,f,g,h variables: x,y,z

● Task: Visualise a quadric in the region -1 ≤ x, y, z ≤ 1
● Process :

– Evaluate equation on a 30 x 30 x 30 regular grid
– Extract 5 surfaces corresponding to

values of the function F(x,y,z) = c.
– Generate a 3D outline round the data (bounding box)

9876543
2

2
2

1
2

0 azayaxaxzayzaxyazayaxa
hgzfyexdczbyaxzyxF

+++++++++=
++++++=))((),,(

Taku Komura Systems Architecture 12

Visualisation : Lecture 3

Visualising a Quadric : Functional Model

Sample F(x,y,z)

Point Array

Outline Contour

Lines Polygons

Display Display

No input : data sources
No output : data sinks

I & O : Filter
Data Store

Taku Komura Systems Architecture 13

Visualisation : Lecture 3

Visualising a Quadric : process objects

● Source object
– procedural generation of quadric
– vtkQuadric

● Filter Objects
– vtkContourFilter

vtkOutlineFilter

– although graphics representation
still an internal representation

● Mapper objects
– conversion to graphics primitives
– vtkPolyDataMapper

Sample F(x,y,z)

Outline Contour

DisplayDisplay

See VisQuad.tcl

Taku Komura Systems Architecture 14

Visualisation : Lecture 3

Visualisation Pipeline Connections
● {Sources, filters, mappers} modules can be

connected in variety of ways

● Connectivity Issues:
 Type: restrictions on types of data that a module can

handle (as input / for output)

 Multiplicity: number of inputs / outputs supported

Taku Komura Systems Architecture 15

Visualisation : Lecture 3

Multiplicity of connections - 1

● Two special multi-connection cases:
– Fan out

— one module supplies the same data to many other modules
– 1 output : N module connectivity

– Multiple outputs
— one module producing a number of different outputs that connect to

different modules
– N outputs : N module connectivity

Taku Komura Systems Architecture 16

Visualisation : Lecture 3

Multiplicity of connections - 2

● Multiplicity allows the consideration of parallel processing in the
visualisation pipeline
– useful for “real-time” type demands on large data sets

Filter

Data

Filter

Data

Filter

Data DataData

Source Filter Mapper

Single Output Fan Out Multiple Output

Taku Komura Systems Architecture 17

Visualisation : Lecture 3

Loops in pipeline/network
● Pipelines so far = acyclic graphs

– no loops

● Loops will be needed, especially for visualisation of
simulation data

Initial
Seed point x0

Probe data
for

velocity v

Integrate
xi+1=xi+v.∆t

Display

Velocity
vector
field

e.g. linear integration filter

Taku Komura Systems Architecture 18

Visualisation : Lecture 3

Visualisation Pipeline : Execution Control

● Problem: ensuring all parts of pipeline are up to
date if a parameter is modified by user, and ensure
synchronisation is maintained?

● Solutions:
1. Event-Driven:

• centralised executive (i.e. controller) notes change occurrences and re-
executes effected modules

2. Demand-Driven
• when output is requested by a mapper object, the network is re-

executed starting with source objects

Taku Komura Systems Architecture 19

Visualisation : Lecture 3

Event-driven Execution Control

● Advantages: only update required modules (i.e. objects)
● Disadvantages: complexity of control, updates even without user demand,

update called for every trivial modification, even if it’s not needed,
making a series of modifications re-executes the network multiple
times.

A B

C G

D E

F

D modified

This section will now need updating

Executive

● Explicit Control of Execution by executive

Taku Komura Systems Architecture 20

Visualisation : Lecture 3

Demand-driven Execution Control

A B

B G

D E

F

Output requested

Mapper object E requests output

• Chain E-D-B-A back propagates
via Update() method

• Chain A-B-D-E executes via
Execute() method.

● Implicit Control of Execution by pipeline dependency tree
● Advantages: simplicity, no global knowledge required
● Disadvantages: inefficient to re-execute module if nothing has changed

Taku Komura Systems Architecture 21

Visualisation : Lecture 3

Execution Control - Methods
● Event-driven

– control of modules is explicit by executive
– pipeline is always up to date (even if not required)

– distribute modules (tasks) across computers
● Demand-driven

– control of modules is implicit by user/module requests
– simple, no central point of control/failure
– do not re-execute a module unless required for output

Taku Komura Systems Architecture 22

Visualisation : Lecture 3

Memory and re-computation trade-off - 1
● Problem : do we store intermediate results in the pipeline ?

● Yes ⇒ keep memory allocated ⇒ static memory model
– memory intensive, beware of large datasets
– saves computation

● No ⇒ release memory allocation ⇒ dynamic memory model
– module may need to be re-executed
– computation intensive, beware of slow processors

(or large data sets too!)

– saves memory

Taku Komura Systems Architecture 23

Visualisation : Lecture 3

Memory and re-computation trade-off - 2

A

B

C D

Modules are dependent
on results from previous
modules

A & B execute twice
with a dynamic memory
model if C and D execute
and once with a static
memory model

Best solution : dependency analysis

Taku Komura Systems Architecture 24

Visualisation : Lecture 3

Visualisation packages

● Generally designed for less specialist users
– in terms of visualisation techniques
– extensibility limited to available macro/interface languages (often visual based)

● AVS : www.avs.com

● Paraview : www.paraview.org (free)

● OpenDX : http://www.opendx.org (free)

http://www.avs.com/
http://www.paraview.org/
http://www.opendx.org/

Taku Komura Systems Architecture 25

Visualisation : Lecture 3

Visual Programming

● Iris Explorer : Mechanical Engineering http://people.bath.ac.uk/enprgp/

Taku Komura Systems Architecture 26

Visualisation : Lecture 3

Visualisation Pipeline : in VTK
● Each module is a VTK object (C++/TCL/Java)

– Connect modules together by using:
— SetInput()

— GetOutput()

— e.g. to connect modules A and B so B takes as input the output
of B

– TCL: A setInput [B GetOutput]

– Java: A.SetInput(B.GetOutput());

● VTK pipeline
– demand-driven execution control maintained implicitly
– memory for intermediate results can be explicitly controlled

— by default (static model)

Taku Komura Systems Architecture 27

Visualisation : Lecture 3

Summary
● The Visualisation Pipeline

– pipeline connectivity
– pipeline execution

— Overall – An Architecture for Visualisation

