
Visualisation Course 2008, UG4/M.Sc
Handout 3 – Creating images and animations

In this exercise you will see how to create images and animations using VTK. You will need to have
completed the exercises on the earlier handouts in order to complete this.

Writing an image

To write an image in VTK, use the filter vtkWindowToImageFilter. The input to this filter is set to a
vktRenderWindow directly, i.e:

vtkRenderWindow ren1
vtkWindowToImageFilter w2if
w2if SetInput ren1

We now create an image writer object, for instance vtkJPEGWriter. The writer is linked to the image filter
in the usual way, and has a method SetFileName to set the name to save the file as.

To write the file call the method Write, however first you will need to call the Render method for the
RenderWindow, and if you’re doing an animation, you must call the modified method of the ImageFilter
to update the filter first, otherwise it will only save the first frame.

Animating the model

In lecture 2 you were introduced to the for loop construct in TCL. With VTK this can be used to iterate over
a set of visualisation commands to create an automated animation in the VTK window.

Try creating a loop to iterate over different density units (i.e. iso-surface value) or subsampling levels with
the knee example from handout 2 or to change the polygon density of the cone from handout 1.

You may find the TCL command after useful in your loop. Usage as after N introduces an N
millisecond delay into the TCL program at that point.

All variables in TCL are strings, in order to perform numerical operations on variables, remember to use
the expr command, which evaluates numerical expressions. Trigonometric operators are also available if
you want to try rotating the camera in a circle.

Animating the camera

The camera object can be retrieved by a method GetActiveCamera in the vtkRenderer object. Look at
the VTK manual webpage for vtkCamera to see the available methods. Some of the more useful ones for
animating simple camera paths are Zoom, Dolly, Azimuth, Elevation, and Pitch. Try these for yourself.

To rotate the model use the Rotate [X,Y,Z] methods in the vtkActor object.
Writing multiple image files

All that has to be done to write out a sequence of image files is to call the image writing methods at each
iteration of a loop. Of course the files will need to be named sequentially. The TCL command format is
useful for this and takes arguments in the same manner as printf in C (type man format in shell for more
information, see TCL command reference manual). The first argument is a format string followed by the
variables to be formatted. A string is output by the command that can be used as the filename.

Don’t forget you must call the Render method in the vtkRenderer and the Modify method in the
vtkWindowToImageFilter before writing out each frame! This is a consequence of the architecture of

VTK.

Creating an MPEG movie file

Now that all the JPG image files have been created, they can be made into a movie. In

/group/teaching/cs4/vis/MPEG

are a number of tools for displaying and creating MPEG files written by the media group at the University
of California Berkeley. To create a movie file use the program mpeg_encode, and to display it, mpeg_play.
The tricky part is setting the plethora of parameters required for an MPEG movie. In the directory you will
find a template file for the encoder called vtk.template.

Copy this file to the directory where your sequence of image files is stored. You will need to edit this file to
point to the image files that you have created. The file is quite well documented but specifically you need to
edit the line:

file* [8-30]

where “file” is the starting pattern of your sequence files and the numbers in square brackets indicate the
minimum and maximum sequence numbers to use (in terms of the file sequence).

Once edited, simply call the encoder with the name of the template:

mpeg_encode vtk.template

The template is set up to read JPEG files, but can easily be changed if required. Unfortunately the JPEG
files produced by vtk by default are ‘progressive JPEGs’ and are not compatible with the rather old mpeg
encoder, so the template is set up to convert the JPEG files into PPM before reading them in by running
them through the ‘djpeg’ command. The resulting output will appear as an MPEG movie in the file
output.mpg. This can be played with either the /group/teaching/cs4/vis/MPEG/play_mpeg or
gmplayer commands.

Changing MPEG parameters

MPEG encoding is a complex process involving estimation of motion within the frame and re-use of parts of
the images. Frames with no motion estimation are called I-frames, frames with motion estimation both
forward and backwards (bi-directional) are called B-frames and P-frames are interpolated from those. The
template has a line which controls the pattern of I,P and B frames in the movie.
You don’t have to make any modifications to the default pattern specified in the template provided, but it is
set up for fairly aggressive encoding so don’t be surprised if the quality of your movies is quite poor. If you
want to have a go at improving the quality of your MPEG file, you can modify the template to add more I-
frames. This will also reduce coding time – but at the expense of a larger filesize.

Capturing interaction

In addition to capturing a pre-defined VTK animation we can also capture user interaction with a VTK
window using the xvidcap utility. This program records the contents of a specified screen area.

To use xvidcap first copy the (common) settings file to your home directory as follows (note the leading
period “.” in the second filename):

cp /group/teaching/cs4/vis/xvidcap/xvidcap.scf ~/.xvidcap.scf

Run the command /group/teaching/cs4/vis/xvidcap/xvidcap

A window taskbar with an attached red box will appear. Position the window and box so that your VTK
window is now inside this red box outline. The third icon from the right on the xvidcap taskbar allows you
to increase/decrease the sizes of the box. e.g. :

1. Use the record button (red) to start recording.
2. Interact with the VTK window with the mouse.
3. Use the stop buttion (square) to stop recording.
4. File menu -> Quit

Resulting movie file stored as output.mpg in the
current directory.

The format of the file output.mpg is MPEG-4. It can be
played with gmplayer under DICE.

xvidcap can, of course, also be used to record model and
camera animation but the initial window placement can
be more difficult to achieve before the animation is
complete!

xvidcap can be used to capture all or part of any window on the
linux destop making it a very useful tool for capturing “canned”

demos instead of relying on a live event. File menu->options gives a number of options to change video
quality and alike. See http://xvidcap.sourceforge.net/ for further information.

Taku Komura (based on a previous exercise by Gordon Watson)

http://xvidcap.sourceforge.net/

