Visualisation Course 2008 UG4/M.Sc.
Handout 2 — Creating a pipeline in VTK

In this exercise you will familiarise yourself with the stages required to create a visualisation pipeline in
VTK. The pipeline you are going to create will display the bone surface of a knee joint from a CT scan of the
visible woman dataset.

Refer to the VTK tutorial handout and associated URLs for assistance with this exercise.

Reading the data : The datafile from the CT scanner is located on the web page and is called
vw_knee. sl ¢c. In order to read this file into VITK you will need an SLC file reader object called
vt kSLCReader to read this volumetric file format.

Creating the Surface: We use the Marching Cubes algorithm to create the surface, covered later in the
lectures. This algorithm is implemented by the vt kCont our Fi |l t er object. Looking at the web page
definition for this object you will see it has a method to specify the value of the created surface, try starting
with 80 density units. The filter can create more than one contour surface, they are specified with an index
before the contour value.

Extra objects: To finish the application you will need to add an actor, a mapper and a rendering window.
The marching cubes algorithm produces triangular polygons in the same manner as the vt kConeSour ce
object did in the previous exercise, so the same Pol yDat aMapper , actor and window objects can be used.

Linking together: Now that all the objects have been initialised, the pipeline can be set up. The syntax is
the same as in the cone example — use the method Set | nput with the substituted results from calling the
object to connect with the method Get Qut put . To connect a mapper to an actor use the method Set Mapper
in the actor, and similarly to add an actor into the renderer, use the method AddAct or .

Setting properties in the actor: One thing you will notice when you build the pipeline is the hideous
default colour of the surface. This is due to the mapper colouring the surface by its default red-blue colour
table. In order to fix this you need to set the mapper to not colour its output surface and set the colour
explicitly in the actor. Firstly use the method Scal ar Vi si bi | i t yO f in the mapper. Colours in VTK are
set via the vt kProperty object. In order to access this object you need to call the actor with the method
Get Property. This will return an object which has a method Set Col or which can be called with 3 floating
point numbers describing red, green and blue colour values. Try setting the colour to something
approximating bone.

Sub-sampling the data: The second thing you will notice after the hideous colour is the appallingly slow
interaction and loading speed, especially if youre rendering in software. This is caused by the
MarchingCubes object (vt kCont our Fi | ter) producing too many triangles for rendering at interactive
rates. One way of fixing this is to sub-sample the original grid of points. VIK provides the object
vt kExtract VO to perform this task, use the method Set Sanpl eRate with an appropriate factor,
specified for each axis.

Tidying up: As a finishing touch add an outline round the data with a vt kQut | i neFi |l ter object. This

object takes as input the data and produces polydata which can be mapped using a vt kPol yDat aMapper
object. See the Vi sQuad. t cl example presented in lecture 3 for further details.

Finally note that variables can be created in TCL using ‘ set <var nane> <val ue>' and referenced using
$var nanme. Try creating variables to control behaviour such as isosurface value and define their values at
the start of the program. This will make your code easier to read and modify at a later stage. Alternatively,
you could investigate how to set your variables from command line parameters to your VTK script (see TCL

online command reference).

An alternative volume data file neghi p. sl ¢ is also available on the course web page. For this file try a
surface value of 0.5 with your VTK script.

Taku Komura 25/1/08(Based on earlier exercise by Gordon Watson)

