Text Technologies for Data Science
INFR11145

IR Evaluation

Instructor:
Walid Magdy

19-Oct-2022

Lecture Objectives

• Learn about how to evaluate IR
 • Evaluation measures
 • P, R, F
 • MAP
 • nDCG

• Implement: (as part of CW2)
 • P, R
 • MAP
 • nDCG
Search Process

- Help user formulate the query by suggesting what he could search for
- Log user's actions: clicks, hovering, giving up
- Fetch a set of results, present to the user
- Iterate!

IR as an Experimental Science!

- Formulate a research question: the hypothesis
- Design an experiment to answer the question
- Perform the experiment
 - Compare with a baseline "control"
- Does the experiment answer the question?
 - Are the results significant? Or is it just luck?
- Report the results!
- Iterate …
- e.g. stemming improves results? (university → univers)
Lab 3 output

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 65, 4.8040</td>
<td>2, 3549, 7.0396</td>
<td>3, 3354, 4.6113</td>
</tr>
<tr>
<td>1, 3533, 4.7264</td>
<td>2, 305, 6.8394</td>
<td>3, 335, 4.5087</td>
</tr>
<tr>
<td>1, 3562, 3.5454</td>
<td>2, 288, 6.6742</td>
<td>3, 268, 3.6606</td>
</tr>
<tr>
<td>1, 3608, 3.4910</td>
<td>2, 223, 6.1252</td>
<td>3, 328, 3.4825</td>
</tr>
<tr>
<td>1, 141, 3.3262</td>
<td>2, 219, 4.8626</td>
<td>3, 21, 3.3984</td>
</tr>
<tr>
<td>1, 361, 3.3262</td>
<td>2, 3762, 4.8626</td>
<td>3, 304, 3.3722</td>
</tr>
<tr>
<td>1, 92, 3.2311</td>
<td>2, 3663, 4.5415</td>
<td>3, 313, 3.3436</td>
</tr>
<tr>
<td>1, 3829, 3.1818</td>
<td>2, 3766, 3.9924</td>
<td>3, 3790, 3.1796</td>
</tr>
<tr>
<td>1, 3420, 3.1273</td>
<td>2, 188, 3.8844</td>
<td>3, 55, 3.0462</td>
</tr>
<tr>
<td>1, 3734, 3.0561</td>
<td>2, 3360, 3.0988</td>
<td>3, 217, 2.8492</td>
</tr>
<tr>
<td>1, 3387, 2.9626</td>
<td>2, 3408, 3.0315</td>
<td>3, 361, 2.8348</td>
</tr>
<tr>
<td>1, 3599, 2.9626</td>
<td>2, 3390, 2.8498</td>
<td>3, 3789, 2.7158</td>
</tr>
</tbody>
</table>

Is that a good performance?

Configure your system

- **About the system:**
 - Stopping? Tokenise? Stemming? n-gram char?
 - Use synonyms improve retrieval performance?
- **Corresponding experiment?**
 - Run your search for a set of queries with each setup and find which one will achieve the best performance
- **About the user:**
 - Is letting users weight search terms a good idea?
- **Corresponding experiment?**
 - Build two different interfaces, one with term weighting functionality, and one without; run a user study
Types of Evaluation Strategies

- **System-centered studies:**
 - Given documents, queries, and relevance judgments
 - Try several variations of the system
 - Measure which system returns the “best” hit list
 - Laboratory experiment

- **User-centered studies**
 - Given several users, and at least two retrieval systems
 - Have each user try the same task on both systems
 - Measure which system works the “best”

Importance of Evaluation

- The ability to measure differences underlies experimental science
 - How well do our systems work?
 - Is A better than B?
 - Is it really?
 - Under what conditions?

- Evaluation drives what to research
 - Identify techniques that work and don’t work
The 3-dimensions of Evaluation

- **Effectiveness**
 - How “good” are the documents that are returned?
 - System only, human + system

- **Efficiency**
 - Retrieval time, indexing time, index size

- **Usability**
 - Learnability, flexibility
 - Novice vs. expert users

Cranfield Paradigm (Lab setting)

1. **Query**
2. **IR System**
3. **Search Results**
4. **Evaluation Module**
5. **Relevance Judgments**
6. **Measure of Effectiveness**

Cranfield Paradigm (Lab setting)

1. **Query**
2. **Document Collection**
3. **IR System**
4. **Search Results**
5. **Evaluation Module**
6. **Relevance Judgments**
7. **Measure of Effectiveness**
Reusable IR Test Collection

- **Collection of Documents**
 - Should be “representative” to a given IR task
 - Things to consider: size, sources, genre, topics, …

- **Sample of information need**
 - Should be “randomized” and “representative”
 - Usually formalized **topic** statements (query + description)

- **Known relevance judgments**
 - Assessed by humans, for each topic-document pair
 - Binary/Graded

- **Evaluation measure**

Good Effectiveness Measures

- Should capture some aspect of what the user wants
 - IR → Do the results satisfy user’s information need?

- Should be easily replicated by other researchers

- Should be easily comparable
 - Optimally, expressed as a single number
 - Curves and multiple numbers are still accepted, but single numbers are much easier for comparison

- Should have predictive value for other situations
 - What happens with different queries on a different document collection?
Set Based Measures

- Assuming IR system returns sets of retrieved results without ranking
- Suitable with Boolean Search
- No certain number of results per query

Which looks the best IR system?

- For query Q, collection has 8 relevant documents:
Precision and Recall

- **Precision:**

 What fraction of these retrieved docs are relevant?

 $$P = \frac{\text{rel} \cap \text{ret}}{\text{retrieved}} = \frac{TP}{TP + FP}$$

- **Recall:**

 What fraction of the relevant docs were retrieved?

 $$R = \frac{\text{rel} \cap \text{ret}}{\text{relevant}} = \frac{TP}{TP + FN}$$
Which looks the best IR system?

- For query Q, collection has 8 relevant documents:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td>R</td>
<td>R</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>P=5/10</td>
<td>P=6/12</td>
<td>P=5/12</td>
<td>P=5/12</td>
<td>P=6/12</td>
<td>R=5/8</td>
<td>R=6/8</td>
<td></td>
</tr>
</tbody>
</table>

Trade-off between P & R

- Precision: The ability to retrieve top-ranked docs that are mostly relevant.
- Recall: The ability of the search to find all of the relevant items in the corpus.
- Retrieve more docs:
 - Higher chance to find all relevant docs \rightarrow $R \uparrow \uparrow$
 - Higher chance to find more irrelevant docs \rightarrow $P \downarrow \downarrow$
Trade-off between P & R

- Returns relevant documents but misses many useful ones too
- The ideal
- Returns most relevant documents but includes lots of junk

![Graph showing the trade-off between Precision and Recall]

What about Accuracy?

- **Accuracy:**
 What fraction of docs was classified correctly?
 \[A = \frac{TP + TN}{TP + FP + TN + FN} \]

![Venn diagram illustrating accuracy metrics]

10/15/22
One Measure? F-measure

\[
F_1 = \frac{2 \cdot P \cdot R}{P + R}
\]

\[
F_\beta = \frac{(\beta^2 + 1)P \cdot R}{\beta^2 P + R}
\]

- Harmonic mean of recall and precision
 - Emphasizes the importance of small values, whereas the arithmetic mean is affected more by outliers that are unusually large
- Beta (\(\beta\)) controls relative importance of P and R
 - \(\beta = 1\), precision and recall equally important \(\rightarrow F_1\)
 - \(\beta = 5\), recall five times more important than precision

Rank-based IR measures

- Consider systems A & B
 - Both retrieved 10 docs, only 5 are relevant
 - P, R & F are the same for both systems
 - Should their performances considered equal?
- Ranked IR requires taking “ranks” into consideration!
- How to do that?
Which is the best ranked list?

- For query Q, collection has 8 relevant documents:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td>1</td>
<td>R</td>
<td>1</td>
<td>R</td>
<td>1</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>R</td>
</tr>
<tr>
<td>7</td>
<td>R</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>R</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>R</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>R</td>
</tr>
<tr>
<td>12</td>
<td>R</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>R</td>
</tr>
</tbody>
</table>

Precision @ K

- k (a fixed number of documents)
- Have a cut-off on the ranked list at rank k, then calculate precision!
- Perhaps appropriate for most of web search: most people only check the top k results
- But: averages badly, Why?
• For query Q, collection has 8 relevant documents:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td>1</td>
<td>R</td>
<td>1</td>
<td>R</td>
<td>1</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

- $P@5$

R-Precision

• For a query with known r relevant documents \Rightarrow R-precision is the precision at rank r ($P@r$)

• r is different from one query to another

• Concept:
 It examines the ideal case: getting all relevant documents in the top ranks

• Is it realistic?
R-Precision

- For query Q, collection has 8 relevant documents:

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td></td>
<td>1</td>
<td>R</td>
<td>1</td>
<td>R</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>R</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td>3</td>
<td>3</td>
<td>R</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>R</td>
<td>4</td>
<td>4</td>
<td>R</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>5</td>
<td>5</td>
<td>R</td>
<td>5</td>
<td>5</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>R</td>
<td>6</td>
<td>6</td>
<td></td>
<td>6</td>
<td>R</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>R</td>
<td>7</td>
<td>7</td>
<td>R</td>
<td>7</td>
<td>R</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>R</td>
<td>8</td>
<td>8</td>
<td>R</td>
<td>8</td>
<td>R</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>9</td>
<td>R</td>
<td>9</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td>10</td>
<td>10</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>11</td>
<td>11</td>
<td>R</td>
<td>11</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>12</td>
<td>R</td>
<td>12</td>
<td>R</td>
<td>12</td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
```

User Satisfaction??

- It is assumed that users need to find relevant docs at the highest possible ranks
 - Precision is a good measure
- But, user would cut-off (stop inspecting results) at some point, say rank x
 - $P@x$
- What is the optimal x?
 - When you think a user can stop?
When a user can stop?

- IR objective: “satisfy user information need”
- Assumption: a user will stop once his/her information need is satisfied
- How? user will keep looking for relevant docs in the ranked list, read them, then stop once he/she feels satisfied
- $P@x \to x$ can be any rank where a relevant document appeared (assume uniform distribution)
- What about calculating the averages over all x's?
 - every time you find relevant doc, calculate $P@x$, then take the average at the end

Average Precision (AP)

<table>
<thead>
<tr>
<th>Q_1 (has 4 rel. docs)</th>
<th>Q_2 (has 3 rel. docs)</th>
<th>Q_3 (has 7 rel. docs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 R 1/1=1.00</td>
<td>1 R 1/3=0.33</td>
<td>1 R 1/2=0.50</td>
</tr>
<tr>
<td>2 R 2/2=1.00</td>
<td>2 R 2/7=0.29</td>
<td>2 R 2/5=0.40</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5 R 3/5=0.60</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7 R 2/7=0.29</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8 R 3/8=0.375</td>
</tr>
<tr>
<td>9 R 4/9=0.44</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

- $\text{AP} = 3.04 / 4 = 0.76$
- $\text{AP} = 0.76$
- $\text{AP} = 1.275 / 7 = 0.182$
Mean Average Precision (MAP)

<table>
<thead>
<tr>
<th>Query</th>
<th>Relevant Documents</th>
<th>Precision</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q₁</td>
<td>R 1/1 = 1.00</td>
<td>1</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>R 2/2 = 1.00</td>
<td>2</td>
<td>0.207</td>
</tr>
<tr>
<td></td>
<td>R 3/5 = 0.60</td>
<td>3</td>
<td>0.182</td>
</tr>
<tr>
<td>Q₂</td>
<td>R 1/3 = 0.33</td>
<td>1</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>R 2/7 = 0.29</td>
<td>2</td>
<td>0.207</td>
</tr>
<tr>
<td></td>
<td>R 3/8 = 0.375</td>
<td>3</td>
<td>0.182</td>
</tr>
<tr>
<td>Q₃</td>
<td>R 1/2 = 0.50</td>
<td>1</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>R 2/5 = 0.40</td>
<td>2</td>
<td>0.207</td>
</tr>
<tr>
<td></td>
<td>R 3/8 = 0.375</td>
<td>3</td>
<td>0.182</td>
</tr>
</tbody>
</table>

\[
\text{MAP} = \frac{(0.76+0.207+0.182)}{3} = 0.383
\]

AP & MAP

\[
AP = \frac{1}{r} \sum_{k=1}^{n} P(k) \times \text{rel}(k)
\]

where, \(r \): number of relevant docs for a given query

\(n \): number of documents retrieved

\(P(k) \): precision @ \(k \)

\(\text{rel}(k) \): 1 if retrieved doc @ \(k \) is relevant, 0 otherwise.

\[
\text{MAP} = \frac{1}{Q} \sum_{q=1}^{Q} AP(q)
\]

where, \(Q \): number of queries in the test collection
AP/MAP

\[AP = \frac{1}{r} \sum_{k=1}^{n} P(k) \times \text{rel}(k) \]

- A mix between precision and recall
- Highly focus on finding relevant document as early as possible
- When \(r = 1 \) \(\rightarrow \) MAP = MRR (mean reciprocal rank \(\frac{1}{k} \))
- MAP is the most commonly used evaluation metric for most IR search tasks
- Uses binary relevance: \(\text{rel} = 0/1 \)

Binary vs. Graded Relevance

- Some docs are more relevant to a query than other relevant ones!
 - We need non-binary relevance
- Binary Relevance:
 - Relevant \(1 \)
 - Irrelevant \(0 \)
- Graded Relevance:
 - Perfect \(4 \)
 - Excellent \(3 \)
 - Good \(2 \)
 - Fair \(1 \)
 - Bad \(0 \)
Binary vs. Graded Relevance

- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant
 - The lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined

- Discounted Cumulative Gain (DCG)
 - Uses graded relevance as a measure of the usefulness
 - The most popular for evaluating web search

Discounted Cumulative Gain (DCG)

- Gain is accumulated starting at the top of the ranking and may be reduced (discounted) at lower ranks

- Users care more about high-ranked documents, so we discount results by $1/\log_2(\text{rank})$
 - the discount at rank 4 is $1/2$, and at rank 8 is $1/3$

- DCG_k is the total gain accumulated at a particular rank k (sum of DG up to rank k):

\[
\text{DCG}_k = \text{rel}_1 + \sum_{i=2}^{k} \frac{\text{rel}_i}{\log_2(i)}
\]
Normalized DCG (nDCG)

• DCG numbers are averaged across a set of queries at specific rank values (DCG@k)
 • e.g., DCG at rank 5 is 6.89 and at rank 10 is 9.61
 • Can be any positive real number!

• DCG values are often normalized by comparing the DCG at each rank with the DCG value for the perfect ranking
 • makes averaging easier for queries with different numbers of relevant documents

• nDCG@k = DCG@k / iDCG@k (divide actual by ideal)

• nDCG ≤ 1 at any rank position

• To compare DCGs, normalize values so that an ideal ranking would have a normalized DCG of 1.0
Summary:

- **IR test collection:**
 - Document collection
 - Query set
 - Relevant judgements
 - IR measures

- **IR measures:**
 - R, P, F \(\rightarrow \) not commonly used
 - P@k, R-precision \(\rightarrow \) used sometimes
 - MAP \(\rightarrow \) the most used IR measure
 - nDGC \(\rightarrow \) the most used measure for web search
Resources

• Text book 1: Intro to IR, Chapter 8
• Text book 2: IR in Practice, Chapter 8