Text Technologies for Data Science
INFR11145

Ranked Retrieval (2)

Instructor:
Walid Magdy

12-Oct-2022

Lecture Objectives

• Learn about Probabilistic models
 • BM25

• Learn about LM for IR
Recall: VSM & TFIDF term weighting

• Combines TF and IDF to find the weight of terms

\[w_{t,d} = \left(1 + \log_{10} tf(t,d) \right) \times \log_{10} \left(\frac{N}{df(t)} \right) \]

• For a query \(q \) and document \(d \), retrieval score \(f(q,d) \):

\[\text{Score}(q,d) = \sum_{t \in q \cap d} w_{t,d} \]

• TFIDF observations

 Can we do better?

 • Term appearing more in a doc gets higher weight (TF)
 • First occurrence is more important (log)
 • Rare terms are more important (IDF)
 • Bias towards longer documents

IR Model

• VSM is very heuristic in nature
 • No notion of relevance is there (still works well)
 • Any weighting scheme, similarity measure can be used
 • Components not interpretable \(\rightarrow \) no guide for what to try next
 • More engineering rather than theory \(\rightarrow \) tweak, run, observe, tweak …
 • Very popular, hard to beat, strong baseline
 • Easy to adapt good ideas from other models

• Probabilistic Model of retrieval
 • Mathematical formulisation for relevant / irrelevant sets
 • Explicitly defines random variables (R,Q,D)
 • Specific about what their values are
 • State the assumptions behind each step
 • Watch out for contradictions
Probabilistic Models

- Concept: Uncertainty is inherent part of IR process
- Probability theory is strong foundation for representing and manipulating uncertainty

- Probability Ranking Principle (1977)

Probability Ranking Principle

- “If a reference retrieval system’s response to each request is a ranking of the documents in the collection in order of decreasing probability of relevance to the user who submitted the request,
- where the probabilities are estimated as accurately as possible on the basis of whatever data have been made available to the system for this purpose,
- the overall effectiveness of the system to its user will be the best that is obtainable on the basis of those data.”

- Basis for most probabilistic approaches for IR
Formulation of PRP

- Rank docs by probability of relevance
 - $P(R|D_{r1}) > P(R|D_{r2}) > P(R|D_{r3}) > P(R|D_{r4}) > \ldots$

- Estimate probability as accurate as possible
 - $P_{est}(R|D) \approx P_{true}(R|D)$

- Estimate with all possibly available data
 - $P_{est}(R | \text{doc, session, context, user profile, \ldots})$

- Best possible accuracy can be achieved with that data
 - \rightarrow the perfect IR system
 - Is it really doable?

- How to estimate the probability of relevance?

PRP Concept

- Imagine IR as a classification problem

$P(R|D) + P(NR|D) = 1$

- Document D is relevant if $P(R|D) > P(NR|D)$
Probability of Relevance

- What is $P_{true}(\text{rel} \mid \text{doc, query, session, user, ...})$?
 - Isn't relevance just the user’s opinion?
 - User decides relevant or not, what is the “probability” thing?
- Search algorithm cannot look into your head (yet!)
 - Relevance depends on factors that algorithm cannot observe
 - SIGIR 2016 best paper award: Understanding Information Need: an fMRI Study
- Different users may disagree on relevance of the same doc
 - Even similar users, doing the same task, in the same context
- $P_{true}(\text{rel} \mid \text{Q, D})$:
 - Proportion of all unseen users / context / tasks for which D would have judged relevant to Q
- Similar to: $P(\text{die}=6 \mid \text{even and not square})$

Okapi BM25 Model

- Based on the probabilistic model
 - A document D is relevant if $P(R=1\mid D) > P(R=0\mid D)$
- Extension to the “binary independence model”
 - Binary features: Document represented by a vector of binary features indicating term occurrence
 - Assume term independence (Naive Bayes assumption) \rightarrow BOW trick
- In 1995, Stephan Robertson with his group came up with the BM25 Formula as part of the Okapi project.
- It outperformed all other systems in TREC
- Popular and effective ranking algorithm
Okapi BM25 Ranking Function

- Let L_d be the number of terms in document d
- Let \bar{L} be the average number of terms in a document

$$w_{t,d} = \frac{tf_{t,d}}{k \cdot \frac{L_d}{\bar{L}} + tf_{t,d} + 0.5} \times \log_{10}\left(\frac{N - df_t + 0.5}{df_t + 0.5}\right)$$

- Best practices: $k=1.5$
Probabilistic Model in IR

- Focuses on the probability of relevance of docs
- Could be mathematically proved
- Different ways to apply it
- BM25 is the most common formula for it

- What other models could be still used in IR?

“Noisy-Channel” Model of IR

User has a information need and writes down a query

Machine’s task: Given the query, guess which document matches the query.

Information need

Query

d_1

d_2

...

d_n

document collection
IR based on Language Model (LM)

• The LM approach directly exploits that idea!
 - a document is a good match to a query if the document model is likely to generate the query

Concept

• Coming up with good queries?
 - Think of words that would likely appear in a relevant doc
 - Use those words as the query

• The language modeling approach to IR directly models that idea
 - a document is a good match to a query if the document model is likely to generate the query
 - happens if the document contains the query words often.

• Build a probabilistic language model M_d from each document d

• Rank documents based on the probability of the model generating the query: $P(q|M_d)$.
Language Model (LM)

- A language model is a probability distribution over strings drawn from some vocabulary
- A topic in a document or query can be represented as a language model
 - i.e., words that tend to occur often when discussing a topic will have high probabilities in the corresponding language model

Unigram LM

- Terms are randomly drawn from a document (with replacement)

\[
P(\bullet \bigcirc \bullet) = P(\bullet) \times P(\bigcirc) \times P(\bullet) \times P(\bullet) = \frac{4}{9} \times \frac{2}{9} \times \frac{4}{9} \times \frac{3}{9}
\]
Example

| | \(P(w|q_1) \) | | \(P(w|q_1) \) |
|---|---|---|---|
| STOP | 0.2 | toad | 0.01 |
| the | 0.2 | said | 0.03 |
| a | 0.1 | likes | 0.02 |
| frog | 0.01 | that | 0.04 |
| ... | ... | ... | ... |

- This is a one-state probabilistic finite-state automaton – a unigram language model.
- \(S = \text{“frog said that toad likes frog STOP”} \)
 \[
P(S) = 0.01 \times 0.03 \times 0.04 \times 0.01 \times 0.02 \times 0.01 \times 0.02\]
 \[
 = 0.0000000000048
 \]

Comparing LMs

- \(M_{d1} \)
 LM generated from Doc 1
- \(M_{d2} \)
 LM generated from Doc 2
- Try to generate sentence \(S \) from \(M_{d1} \) & \(M_{d2} \)

<table>
<thead>
<tr>
<th>text:</th>
<th>the</th>
<th>class</th>
<th>pleaseth</th>
<th>yon</th>
<th>maiden</th>
<th>P(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{d1}):</td>
<td>0.2</td>
<td>0.01</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.00000000000001</td>
</tr>
<tr>
<td>(M_{d2}):</td>
<td>0.2</td>
<td>0.001</td>
<td>0.02</td>
<td>0.1</td>
<td>0.01</td>
<td>0.0000000004</td>
</tr>
</tbody>
</table>

\(P(\text{text}|M_{d2}) > P(\text{text}|M_{d1}) \)
Stochastic Language Models

- A statistical model for generating text
 - Probability distribution over strings in a given language

\[
P(\bullet\bullet\bullet|M) = P(\bullet|M) \\
P(\bullet|M,\bullet) \\
P(\bullet|M,\bullet\bullet) \\
P(\bullet|M,\bullet\bullet\bullet)
\]

Unigram and Higher-order LM

\[
P(\bullet\bullet\bullet\bullet) = P(\bullet) P(\bullet|\bullet) P(\bullet|\bullet\bullet) P(\bullet|\bullet\bullet\bullet)
\]

- **Unigram Language Models**
 \[P(\bullet) P(\bullet) P(\bullet) P(\bullet)\]

- **Bigram (generally, \(n\)-gram) Language Models**
 \[P(\bullet) P(\bullet|\bullet) P(\bullet|\bullet) P(\bullet|\bullet)\]
LM in IR

- Each document is treated as basis for a LM.
- Given a query q, rank documents based on $P(d|q)$

 $$
P(d|q) = \frac{P(q|d)P(d)}{P(q)}
 $$

 - $P(q)$ is the same for all documents \Rightarrow ignore
 - $P(d)$ is the prior – often treated as the same for all d
 - But we can give a prior to “high-quality” documents, e.g., those with high PageRank (later to be discussed).
 - $P(q|d)$ is the probability of q given d.

 - So to rank documents according to relevance to q, ranking according to $P(q|d)$ and $P(d|q)$ is equivalent

LM in IR: Basic idea

- We attempt to model the query generation process.
- Then we rank documents by the probability that a query would be observed as a random sample from the respective document model.

- That is, we rank according to $P(q|d)$.
\(P(q|d) \)

- We will make the conditional independence assumption.

\[
P(q|M_d) = P\left(\big| t_1, \ldots, t_{|q|}\big| |M_d\right) = \prod_{1 \leq k \leq |q|} P\left(t_k | M_d \right)
\]

- This is equivalent to:

\[
P(q|M_d) = \prod_{\text{each term } t \text{ in } q} P(t|M_d)^{tf_{t,q}}
\]

- Multinomial model (omitting constant factor)

\(tf_{t,d} \): term frequency (# occurrences) of \(t \) in \(d \)

\(P(t|M_d) = \frac{tf_{t,d}}{|d|} \)

- Probability of a term \(t \) in a LM \(M_d \) using Maximum Likelihood Estimation (MLE)

\(|d| \): length of \(d \);

\(tf_{t,d} \): # occurrences of \(t \) in \(d \)

\[
P(q|M_d) = \prod_{\forall t \in q} \left(\frac{tf_{t,d}}{|d|} \right)^{tf_{t,q}}
\]

- Probability of a query \(q \) to be noticed in a LM \(M_d \):

Example

\[P(\bullet \bullet \bullet \bullet) = P(\bullet \bullet) \times P(\bullet \bullet) \times P(\bullet) \]
\[= \frac{4}{9} \times \frac{2}{9} \times \frac{3}{9} = 0.0146 \]

• Is that fair?
 • In VSM, \(S(Q,D) \) was summation, works more like OR in Boolean search. Missing one term reduces score only
 • In language model, \(S(Q,D) \) is \(P(Q|D) \rightarrow \) Multiplication of probabilities \(\rightarrow \) missing one term makes score = 0
 • Is there a better way to handle unseen terms?

Smoothing

• Problem: Zero frequency
• Solution: “Smooth” terms probability
Smoothing

- Document texts are a sample from the language model
- Missing words should not have zero probability of occurring
- A missing term is possible (even though it didn’t occur)
 - but no more likely than would be expected by chance in the collection.
- A technique for estimating probabilities for missing (or unseen) words
 - Overcomes data-sparsity problem
 - lower (or discount) the probability estimates for words that are seen in the document text
 - assign that “left-over” probability to the estimates for the words that are not seen in the text (and also on the seen ones)

Mixture Model

\[P(t|d) = \lambda P(t|M_d) + (1 - \lambda)P(t|M_c) \]

- Mixes the probability from the document with the general collection frequency of the word.
- Estimate for **unseen** words is \((1-\lambda) P(t|M_c)\)
 - Based on collection language model (background LM)
 - \(P(t|M_c)\) is the probability for query word \(i\) in the collection language model for collection \(C\) (background probability)
 - \(\lambda\) is a parameter controlling probability for unseen words
- Estimate for **observed words** is
 \[\lambda P(t|M_d) + (1-\lambda) P(t|M_c) \]

CF
Jelinek-Mercer Smoothing

\[P(t|d) = \lambda P(t|M_d) + (1 - \lambda) P(t|M_c) \]

- **High value of \(\lambda \)**: “conjunctive-like” search – tends to retrieve documents containing all query words.
- **Low value of \(\lambda \)**: more disjunctive, suitable for long queries
- Correctly setting \(\lambda \) is important for good performance.
- Final Ranking function:

\[
P(q|M_d) \propto \prod_{1 \leq k \leq |q|} \left(\lambda \cdot P(t_k|M_d) + (1 - \lambda) \cdot P(t_k|M_c) \right)
\]

Example

- **Collection**: \(d_1 \) and \(d_2 \)
- \(d_1 \): “Jackson was one of the most talented entertainers of all time”
- \(d_2 \): “Michael Jackson anointed himself King of Pop”
- **Query** \(q \): Michael Jackson
- Use mixture model with \(\lambda = 1/2 \)
- \(P(q|d_1) = [(0/11 + 1/18)/2] \cdot [(1/11 + 2/18)/2] \approx 0.003 \)
- \(P(q|d_2) = [(1/7 + 1/18)/2] \cdot [(1/7 + 2/18)/2] \approx 0.013 \)
- Ranking: \(d_2 > d_1 \)
Notes on Query Likelihood Model

- It has similar effectiveness to BM25
- With more sophisticated techniques, it outperforms BM25
 - Topic models
- There are several alternative smoothing techniques
 - That was just an example

n-grams LMs

- Unigram language model
 - probability distribution over the words in a language
 - associates a probability of occurrence with every word
 - generation of text consists of pulling words out of a “bucket” according to the probability distribution and replacing them

- N-gram language model
 - some applications use bigram and trigram language models where probabilities depend on previous words
 - predicts a word based on the previous n-1 words
LMs for IR: 3 possibilities

- Probability of generating the query text from a document language model
- Probability of generating the document text from a query language model
- Comparing the language models representing the query and document topics

Summary

- Three ways to model IR
 - VSM
 How query vector aligns with document vector?
 - Probabilistic Model
 What is the relevance probability of document D given query Q?
 - LM
 How likely is it possible to observe/generate sequence of terms Q in a language model of document D?
Resources

• Text book 1: Intro to IR, Chapter 12
• Text book 2: IR in Practice, Chapter 7.2, 7.3
• Readings: