Lecture Objectives

- Learn about Ranked IR
 - TFIDF
 - VSM
 - SMART notation

- Implement:
 - TFIDF
Boolean Retrieval

- Thus far, our queries have all been Boolean.
 - Documents either: “match” or “no match”.
- Good for expert users with precise understanding of their needs and the collection.
 - Patent search uses sophisticated sets of Boolean queries and check hundreds of search results
 (car OR vehicle) AND (motor OR engine) AND NOT (cooler)
- Not good for the majority of users.
 - Most incapable of writing Boolean queries.
 - Most don’t want to go through 1000s of results.
 - This is particularly true for web search
 - Question: What is the most unused web-search feature?

Ranked Retrieval

- Typical queries: free text queries
- Results are “ranked” with respect to a query
- Large result sets are not an issue
 - We just show the top k (≈ 10) results
 - We don’t overwhelm the user
- Criteria:
 - Top ranked documents are the most likely to satisfy user’s query
 - Score is based on how well documents match a query
 \[
 \text{Score}(d,q)
 \]
Old Example

- Find documents matching query \{ink, wink\}
 1. Load inverted lists for each query word
 2. Merge two postings lists \(\rightarrow\) **Linear merge**

- Apply function for matches
 - Boolean: exist / not exist = 0 or 1
 - Ranked: \(f(tf, df, length, \ldots) = 0 \rightarrow 1\)

<table>
<thead>
<tr>
<th>ink</th>
<th>3:1</th>
<th>4:1</th>
<th>5:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>wink</th>
<th>1:1</th>
<th>5:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matches
1: \(f(0,1) = 0.4\)
3: \(f(1,0) = 0.3\)
4: \(f(1,0) = 0.6\)
5: \(f(1,1) = 0.7\)

Function example: **Jaccard coefficient**

- a commonly used measure of overlap of two sets \(A\) and \(B\)

\[
jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|}
\]

\[
jaccard(A, A) = 1
\]

\[
jaccard(A, B) = 0, \quad \text{if } A \cap B = 0
\]

- Example:
 - \(D_1 \cup D_2 = \{\text{he, likes, to, wink, and, drink}\}\)
 - \(D_1 \cap D_2 = \{\text{he, likes, to, drink}\}\)
 - \(jaccard(D_1, D_2) = \frac{4}{6} = 0.6667\)
Jaccard coefficient: Issues

- Does not consider **term frequency** (how many times a term occurs in a document)
- It treats all terms equally!
 - How about **rare terms** in a collection? more informative than frequent terms.
 - *He likes to drink*, shall “to” == “drink”?
- Needs more sophisticated way of **length** normalization
 - |D1| = 3, |D2| = 1000!
 - D1 → Q, D2 → D

Should terms be treaded the same?

- Collection of 5 documents (balls = terms)
- Query
 - Which is the least relevant document?
 - Which is the most relevant document?
TFIDF

- **TFIDF:** Term Frequency, Inverse Document Frequency
- \(tf(t,d) \): number of times term \(t \) appeared in document \(d \)
 - As \(tf(t,d) \) ↑↑ → importance of \(t \) in \(d \) ↑↑
 - Document about IR, contains “retrieval” more than others
- \(df(t) \): number of documents term \(t \) appeared in
 - As \(df(t) \) ↑↑ → importance if \(t \) in a collection ↓↓
 - “the” appears in many document → not important
 - “FT” is not important word in financial times articles

DF, CF, & IDF

- **DF ≠ CF** (collection frequency)
 - \(cf(t) \) = total number of occurrences of term \(t \) in a collection
 - \(df(t) \) ≤ \(N \) (\(N \): number of documents in a collection)
 - \(cf(t) \) can be ≥ \(N \)
- **DF** is more commonly used in IR than **CF**
 - **CF** is still used
- \(idf(t) \): inverse of \(df(t) \)
 - As \(idf(t) \) ↑↑ → rare term → importance ↑↑
 - \(idf(t) \) → measure of the informativeness of \(t \)
DF vs CF

<table>
<thead>
<tr>
<th></th>
<th>he</th>
<th>drink</th>
<th>ink</th>
<th>likes</th>
<th>pink</th>
<th>think</th>
<th>wink</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

D1: He likes to wink, he likes to drink

D2: He likes to drink, and drink, and drink

D3: The thing he likes to drink is ink

D4: The ink he likes to drink is pink

D5: He likes to wink, and drink pink ink

5 5 3 5 2 1 2 DF
6 7 3 6 2 1 2 CF

IDF: formula

\[
idf(t) = \log_{10}\left(\frac{N}{df(t)}\right)
\]

- Log scale used to dampen the effect of IDF
- Suppose \(N = 1\) million →

<table>
<thead>
<tr>
<th>term</th>
<th>df(t)</th>
<th>idf(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>calpurnia</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>animal</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>sky</td>
<td>1,000</td>
<td>3</td>
</tr>
<tr>
<td>fly</td>
<td>10,000</td>
<td>2</td>
</tr>
<tr>
<td>under</td>
<td>100,000</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1,000,000</td>
<td>0</td>
</tr>
</tbody>
</table>
TFIDF term weighting

- One the best known term weights schemes in IR
 - Increases with the number of occurrences within a document
 - Increases with the rarity of the term in the collection
- Combines TF and IDF to find the weight of terms
 \[w_{t,d} = \left(1 + \log_{10} tf(t,d)\right) \times \log_{10} \left(\frac{N}{df(t)} \right) \]
- For a query \(q \) and document \(d \), retrieval score \(f(q,d) \):
 \[Score(q,d) = \sum_{t \in q \cap d} w_{t,d} \]

Document/Term vectors with tfidf

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>5.25</td>
<td>3.18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>Brutus</td>
<td>1.21</td>
<td>6.1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>8.59</td>
<td>2.54</td>
<td>0</td>
<td>1.51</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1.54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>2.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1.51</td>
<td>0</td>
<td>1.9</td>
<td>0.12</td>
<td>5.25</td>
<td>0.88</td>
</tr>
<tr>
<td>worser</td>
<td>1.37</td>
<td>0</td>
<td>0.11</td>
<td>4.15</td>
<td>0.25</td>
<td>1.95</td>
</tr>
</tbody>
</table>

→ Vector Space Model
Vector Space Model

• Documents and Queries are presented as vectors
• Match (Q,D) = Distance between vectors
• Example: Q= Gossip Jealous
• Euclidean Distance?
 Distance between the endpoints of the two vectors
• Large for vectors of diff. lengths
• Take a document d and append it to itself. Call this document d’.
 • “Semantically” d and d’ have the same content
 • Euclidean distance can be quite large

Angle Instead of Distance

• The angle between the two documents is 0, corresponding to maximal similarity.
• Key idea: Rank documents according to angle with query.
 • Rank documents in increasing order of the angle with query
 • Rank documents in decreasing order of cosine (query, document)
• Cosine of angle = projection of one vector on the other
Length Normalization

- A vector can be normalized by dividing each of its components by its length – for this we use the L_2 norm:
 \[
 \|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}
 \]

- Dividing a vector by its L_2 norm makes it a unit (length) vector (on surface of unit hypersphere)

- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

Example

- $D_1 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$ \rightarrow $\|D_1\|_2 = \sqrt{1 + 9 + 4} = 3.74$

- $D_{1\text{ normalized}} = \begin{bmatrix} 0.267 \\ 0.802 \\ 0.535 \end{bmatrix}$

- $D_2 = \begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix}$ \rightarrow $\|D_1\|_2 = \sqrt{9 + 81 + 36} = 11.25$

- $D_{2\text{ normalized}} = \begin{bmatrix} 0.267 \\ 0.802 \\ 0.535 \end{bmatrix}$
Cosine “Similarity” (Query, Document)

- \vec{q}_i is the tf-idf weight of term i in the query
- \vec{d}_i is the tf-idf weight of term i in the document
- For normalized vectors:
 \[
 \cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{\|\vec{q}\| \|\vec{d}\|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}
 \]
- For non-normalized vectors:
 \[
 \cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{\|\vec{q}\| \|\vec{d}\|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}
 \]

Algorithm

COSINESCORE(q)

1. float $Scores[|N|] = 0$
2. float $Length[|N|]$
3. for each query term t
4. do calculate $w_{t,q}$ and fetch postings list for t
5. for each pair(d, $tf_{t,d}$) in postings list
6. do $Scores[d] += w_{t,d} \times w_{t,q}$
7. Read the array $Length$
8. for each d
10. return Top K components of $Scores[]$
TFIDF Variants

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (natural) tf_{r,d}</td>
<td>n (co) t (idf) log N/df(t)</td>
<td>n (none) 1</td>
</tr>
<tr>
<td>a (augmented) 0.5 + 0.5 tf_{r,d} max(0,log N/df(t))</td>
<td>p (prob idf) max(0,log N/df(t))</td>
<td>c (cosine) 1/√(w_1^2 + w_2^2 + ... + w_p^2)</td>
</tr>
<tr>
<td>b (boolean) 1 if tf_{r,d} > 0, 0 otherwise</td>
<td>r (pivot unique)</td>
<td>b (byte size) 1/CharLength^n, α < 1</td>
</tr>
<tr>
<td>L (log ave) 1 + log(tf_{r,d})</td>
<td>1 + log(tf_{r,d})</td>
<td>1</td>
</tr>
</tbody>
</table>

- Many search engines allow for different weightings for queries vs. documents
- **SMART** Notation: use notation ddd.qqq, using the acronyms from the table
- A very standard weighting scheme is: Inc.ltc

For Lab and CW

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (natural) tf_{r,d}</td>
<td>n (co) t (idf) log N/df(t)</td>
<td>n (none) 1</td>
</tr>
<tr>
<td>a (augmented) 0.5 + 0.5 tf_{r,d} max(0,log N/df(t))</td>
<td>p (prob idf) max(0,log N/df(t))</td>
<td>c (cosine) 1/√(w_1^2 + w_2^2 + ... + w_p^2)</td>
</tr>
<tr>
<td>b (boolean) 1 if tf_{r,d} > 0, 0 otherwise</td>
<td>r (pivot unique)</td>
<td>b (byte size) 1/CharLength^n, α < 1</td>
</tr>
<tr>
<td>L (log ave) 1 + log(tf_{r,d})</td>
<td>1 + log(tf_{r,d})</td>
<td>1</td>
</tr>
</tbody>
</table>

“OR” operator, then:

\[
Score(q,d) = \sum_{t \in q \cap d} \left(1 + \log_{10}(tf(t,d)) \right) \times \log_{10}\left(\frac{N}{df(t)} \right)
\]
Summary of Steps:

- Represent the query as a weighted *tf-idf* vector
- Represent each document as a weighted *tf-idf* vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., \(K = 10 \)) to the user

Retrieval Output

- For a query \(q_1 \), the output would be a list of documents ranked according to the \(\text{score}(q_1, d) \)
- Possible output format:

<table>
<thead>
<tr>
<th>Query id</th>
<th>Document id</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>710</td>
<td>0.9234</td>
</tr>
<tr>
<td>1</td>
<td>213</td>
<td>0.7678</td>
</tr>
<tr>
<td>1</td>
<td>103</td>
<td>0.6761</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>0.6556</td>
</tr>
<tr>
<td>1</td>
<td>501</td>
<td>0.4301</td>
</tr>
</tbody>
</table>
Resources

• Text book 1: Intro to IR, Chapter 6.2 → 6.4
• Text book 2: IR in Practice, Chapter 7

• Lab 3