Text Technologies for Data Science
INFR11145

Introduction

Instructor:
Walid Magdy

21-Sep-2022

Lecture Objectives

• Know about the course:
 • Topic
 • Objectives
 • Requirements
 • Format
 • Logistics

• Note:
 • No much technical content today
 • Don’t assume next lectures would be the same!
Text Technologies for Data Science

= documents, words, terms, …
≠ images, videos, music (with no text)

Information Retrieval
Text Classification
Text Analytics

Search Engines Technologies

What is Information Retrieval (IR)?

IR is NOT just

Google

Web search
What is IR?

Speech - QA

Social search

Information Filtering

Recommendation
What is IR?

Library (book) search
1950's

What is IR?

Legal search
What is IR?

Cross-Language search

Content-based music search
What is IR?

IR ≠ Find
- Sequential
- Exact match

*Source: Matt Lease (IR Course at U Texas)
What is IR?

- IR is finding material of an unstructured nature that satisfies an information need from within large collections

- Find → Task
- Unstructured → Nature
- Information need → Target
- Satisfies → Evaluation

Text classification
Text classification

United States Patent
Magdy et al.

Patent No.: US 8,881,191 B2
Date of Patent: Nov. 4, 2014

PERSONALIZED EVENT NOTIFICATION USING REAL-TIME VIDEO ANALYSIS

Inventors: Walid Magdy, Giza (EG); Motaz El-Saban, Giza (EG)
Assignee: Microsoft Corporation, Redmond, WA (US)

Int. Cl. H04H 60/05 (2008.01)
G06F 17/30 (2006.01)

US Cl. CPC H04H 60/48 (2013.01); H04H 60/65 (2013.01); G06F 17/3078 (2013.01); G06F 17/4831 (2013.01)
USPC 725/32; 725/43; 725/52; 382/181; 348/460

Notice: Subject to any disclaimer. The term of this
What is text classification?

- **Text classification** is the process of classifying documents into predefined categories based on their content.

 - Input: Text (document, article, sentence)
 - Task: Classify into one/multiple categories
 - Categories:
 - Binary: relevant/irrelevant, spam .. etc.
 - Few: sports/politics/comedy/technology
 - Hierarchical: patents

In this course, we will learn to

- How to build a search engine
 - which search results to rank at the top
 - how to do it fast and on a massive scale

- How to evaluate a search algorithm
 - is system A really better than system B

- How to work with text
 - two tweets talk about the same topic?
 - handle misspellings, morphology, synonyms

- How to classify text
 - into categories (sports, news, comedy, …)
 - features to use
 - evaluate classification quality

- Apply text analytics
 - Find what makes a set of document different from others
How this course is different from others?

- ANLP, FNLP
 - Some text processing
 - Text laws
 - No NLP (word/phrase level vs document level)

- ML practical
 - Text classification
 - No ML (using off-the-shelf ML tool)

- It does not overlap with others on:
 - Search engines
 - IR methods/models
 - IR evaluation
 - Text analysis
 - Processing large amount of textual data

Some terms you will learn about

- Inverted index
- Vector space model
- Retrieval models: TFIDF, BM25, LM
- Page rank
- Learning to rank (L2R)
- MAP, MRR, nDCG
- Mutual information, information gain, Chi-square
- binary/multiclass classification, ranking, regression
This Course is Highly Practical

- 70% of the mark is on practical work
- You will implement 50+% of what you learn
- By W5, you should have developed a basic working Search Engine from scratch
- Practical Lab every week
- Two coursework, mostly coding
- A course group project to develop a full system

Pre-requests (1/3)

- Maths requirements:
 - Linear algebra: vectors/matrices (addition, multiplication, inverse, projections ... etc.).
 - Special functions: Log, Exp, Ln.

\[
BM25(D, Q) = \sum_{i=1}^{n} \log \left(\frac{N - n(q_i) + 0.5}{n(q_i) + 0.5} \cdot \frac{f(q_i, D) \cdot (k_1 + 1)}{f(q_i, D) + k_1 \cdot (1 - b + b \cdot \frac{|D|}{avgdl}) + \delta} \right)
\]
Pre-requests (2/3)

- Programming requirements:
 - Python
 - Knowledge in regular expressions
 - Shell commands (cat, sort, grep, uniq, sed, ...)
 - Data structures and software engineering for course project.

- We DO NOT teach coding skills in this course! We assume you can code!

\[
\text{\textbackslash b}[^w.\%+-]+@[\textbackslash w.-]+[a-zA-Z]\{2,6\}\text{\textbackslash b}
\]

Parse: username@domain.TLD (top level domain)

Pre-requests (3/3)

- Team-work requirement:
 - Final course project would be in groups of 5-6 students.
 - Working in a team for the project is a requirement.
 - No exceptions will be allowed!
Skills to be gained !!!

- Working with large text collections
- Few shell commands
- Some Python programming
- Software engineering skills
- Build text classifier in few mins
- TEAM WORK
 - Project management
 - Time management
 - Task assignment + system integration

Course Structure

- 20 Lectures:
 - 2 lectures → Introduction (today)
 - 14 lectures → IR (50% practical lectures)
 - 4 lectures → Text Analytics/Classification

- 8-10 Labs:
 - Practice what you learn

- No Tutorials
- Some self-reading
- Lots of system implementation
- Few online videos
Course Instructors

Walid Magdy
Reader
(15 lectures)

Bjorn Ross
Lecturer
(4 lectures)

+ 1 guest lecture

Lecture Format

• 2 Lectures at a time
• Questions are allowed any time. Feel free to interrupt
• 5-10 mins break after L1
 • Feel free to go out and come back
 • Discuss 1st lecture with friends
 • Questions on L1 are allowed before starting L2
 • Mind teaser math problem (for fun)
• Some lectures are interactive. Please participate
• Some lectures will include demos (running code)
Labs

- **How it works:**
 - Relevant lab will be announced with each lecture on Wednesday
 - You should implement lab directly after lecture
 - Any issues \(\rightarrow\) ask on Piazza (tag question by lab number)
 - Produced output \(\rightarrow\) Share on Piazza (publicly)
 - Demonstrators \(\rightarrow\) answer questions + validate your output
 - DO NOT ask a question before checking if it was asked before
 - Tuesdays \(\rightarrow\) Optional in-person labs for those still require support

- **Optional in-person labs:**
 - Location: AT 6.06
 - Times: Tuesday, 9am, 10am, 12pm

- **Demonstrators:**
 - Zheng Zhao, Ibrahim Abu Farha, and Amr Keleg

Lab Zero (Lab 0)

- Please check Lab 0 before next week lectures

- Lab 0 is designed for one purpose:
 Help you decide to take TTDS or not

- Lab content:
 - Read a text file word by word, lower-case letters, print
 - Count the number of occurrence of few words

- If Lab 0 challenging
 \(\rightarrow\) Probably, TTDS would be very challenging to you
 \(\rightarrow\) You will need much extra effort to implement labs and CW
 \(\rightarrow\) Think wisely before you decide to take the course
Assessments

• Coursework 1: 10%
 The same as labs 1-3 → Build your first search engine

• Coursework 2: 20%
 IR Evaluation, Text classification/analytics

• Group project: 40%
 A full running search engine supported by text technologies

• Final Exam: 30%

Group Project

• The largest weight: 40% of the total mark

• Teamwork → Group 5-6 (you select your own group)

• Design a full end-to-end search engine that searches a large collection of documents with many functionalities.

• Mark = Mark\text{project} \times \text{weight}_{\text{individual}}
 - Mark\text{project} → the same for all team members
 - How complete/effective/fast/nice is your search engine?
 - \text{weight}_{\text{individual}} → weight for individual contribution.
 - ranges from 0 to 1. It should be 1.0 by default but can be different for each member according to their contribution.

• Project prize → a prize will be awarded to best project
Example: BetterReads

- 11.5M Book reviews from Good reads
- Average query time: 1 secs
- New reviews are crawled and indexed automatically every day
- Ranking: Relevance + Sentiment
- Engine hosted on Google cloud compute

Note: we will provide credit to Google cloud to host your engine
Timeline

- 2 Semesters (or one?)

Logistics

- Lectures:
 - Two lectures on Wednesdays, 15.00-17.30
 - Recording will be available
 - Handouts to be posted on the day of the lecture

- Course webpage:
 - Link: http://www.inf.ed.ac.uk/teaching/courses/tts/
 - Handouts, Labs, CW details, link to recordings

- Learn:
 - Lecture recordings
 - Deadlines

- Note: all course materials are made public including recordings. Feel free to share with anyone interested
Piazza

- All communication will be there
- Questions about lectures/labs/CW are there
- Feel free to answer each other questions
- Lab support will be mainly there
- Please share your lab answers there
- Tag each question/post by its relevant topic (lab, CW … etc)

- Join NOW: [link](#)

FAQ

- How the project would be managed? What if one member does not work?
- I am not that solid in programming, should I take this course?
- Can I audit the course?

- Anything else?
Next Lecture

• Definitions of IR main concepts
 (more introduction)