
The Girard-Reynolds Isomorphism

Philip Wadler, University of Edinburgh

wadler@inf.ed.ac.uk

Coincidences

Curry-Howard

Hindley-Milner

Girard-Reynolds

John Reynolds (1974)

Jean-Yves Girard (1972)

John Reynolds (1983)

Types, Abstraction and Parametric Polymorphism
Once upon a time, there was a university with a peculiar tenure policy. All faculty were

tenured, and could only be dismissed for moral turpitude. What was peculiar was the

definition of moral turpitude: making a false statement in class. Needless to say, the

university did not teach computer science. However, it had a renowned department of

mathematics.

One semester, there was such a large enrollment in complex variables that two sections

were scheduled. In one section, Professor Descartes announced that a complex number was

an ordered pair of reals, and that two complex numbers were equal when their

corresponding components were equal. He went on to explain how to convert reals into

complex numbers, what “i” was, how to add, multiply, and conjugate complex numbers,

and how to find their magnitude.

John Reynolds (1983), continued

In the other section, Professor Bessel announced that a complex number was an ordered

pair of reals the first of which was nonnegative, and that two complex numbers were equal

if their first components were equal and either the first components were zero or the second

components differed by a multiple of 2. He then told an entirely different story about

converting reals, “i”, addition, multiplication, conjugation, and magnitude.

Then, after their first classes, an unfortunate mistake in the registrar’s office caused the two

sections to be interchanged. Despite this, neither Descartes nor Bessel ever committed

moral turpitude, even though each was judged by the other’s definitions. The reason was

that they both had an intuitive understanding of type. Having defined complex numbers and

the primitive operations upon them, thereafter they spoke at a level of abstraction that

encompassed both of their definitions.

The moral of this fable is that:Type structure is a syntactic discipline for enforcing levels of

abstraction.

A tale of Two Theorems

Girard’s Representation Theorem
Every function that can be proved total in

second-order Peano arithmetic can be represented in

second-order lambda calculus.

projection : proofs→ terms

Reynolds’s Abstraction Theorem
Terms in second-order lambda calculus take

related arguments to related results,

for a suitable notion of logical relation.

embedding : terms→ proofs

A tale of Two Theorems

Girard’s Representation Theorem
Every function that can be proved total in

second-order Peano arithmetic can be represented in

second-order lambda calculus.

projection : proofs→ terms

Reynolds’s Abstraction Theorem
Terms in second-order lambda calculus take

related arguments to related results,

for a suitable notion of logical relation.

embedding : terms→ proofs

The Curry-Howard homeomorphismLC'90

The Curry-Howard Isomorphism

∀ ⊃ ∧ ∨ F

Π → × + ⊥

The Girard-Reynolds Isomorphism

∀ ∀2 ∀1 →

∀ →

The Curry-Howard Isomorphism

∀ ⊃ ∧ ∨ F

Π → × + ⊥

The Girard-Reynolds Isomorphism

∀ ∀2 ∀1 →

∀ →
Rather than enriching the type systems to match logic,

we impoverish logic to match the type structure.

— Daniel Leivant

Part I

The Girard Projection

— from Logic to Lambda

Naturals

A sort and two operations

N, sN→N, zN

Define operations by equations

(+)N→N→N

(s m) + n = s (m + n)

z + n = n

Induction

Naturals satisfy induction

N ≡ {nN | ∀X N. (∀mN.m ∈ X → s m ∈ X) → z ∈ X → n ∈ X}

Three theorems

∀nN. n ∈ N → s n ∈ N

z ∈ N

∀mN.∀nN.m ∈ N → n ∈ N → m + n ∈ N

Girard projection — from predicates to types

N ≡ {nN | ∀X N. (∀mN.m ∈ X → s m ∈ X) → z ∈ X → n ∈ X}
↓

N ≡ ∀X. (X → X) → (X → X)

Girard projection — from proofs to terms

∀nN. n ∈ N → s n ∈ N

↓
sN→N ≡ λnN.ΛX. λsX→X . λzX . s (n X s z)

z ∈ N

↓
zN ≡ ΛX. λsX→X . λzX . z

∀mN.∀nN.m ∈ N → n ∈ N → m + n ∈ N

↓
(+)N→N→N ≡ λmN. λnN.m N s n

Successor: proof

As ≡ ∀mN.m ∈ X → s m ∈ X Az ≡ z ∈ X

[As]s
∀1E

n ∈ X → s n ∈ X

[n ∈ N]n
β

∀X N. As → Az → n ∈ X
∀E

As → Az → n ∈ X [As]s
→E

Az → n ∈ X [Az]z
→E

n ∈ X
→E

s n ∈ X
→Iz

Az → s n ∈ X
→Is

As → Az → s n ∈ X
∀I

∀X N. As → Az → s n ∈ X
β

s n ∈ N
→In

n ∈ N → s n ∈ N
∀1I

∀nN. n ∈ N → s n ∈ N

Successor: term

[sX→X]

[nN]
∀E

(n X)(X→X)→X→X [sX→X]
→E

(n X s)X→X [zX]
→E

(n X s z)X

→E
(s (n X s z))X

→Iz
(λzX . s (n X s z))X→X

→Is
(λsX→X . λzX . s (n X s z))(X→X)→X→X

∀I
(ΛX. λsX→X . λzX . s (n X s z))N

→In
(λnN.ΛX. λsX→X . λzX . s (n X s z))N→N

Plus: proof

As ≡ ∀mN.m ∈ X → s m ∈ X Az ≡ z ∈ X
As+ ≡ ∀mN.m + n ∈ N → (s m) + n ∈ N Az+ ≡ z + n ∈ N

[m ∈ N]m
β

∀X N. As → Az → m ∈ X
∀E

As+ → Az+ → m + n ∈ N

··· s

∀nN. n ∈ N → s n ∈ N
∀1E

m + n ∈ N → s (m + n) ∈ N
β+

m + n ∈ N → (s m) + n ∈ N
∀1I

As+
→E

Az+ → m + n ∈ N

[n ∈ N]n
β+

Az+
→E

m + n ∈ N
→In

n ∈ N → m + n ∈ N
→Im

m ∈ N → n ∈ N → m + n ∈ N

Plus: term

[mN]
∀E

(m N)(N→N)→N→N

···
sN→N

→E
(m N s)N→N [nN]

→E
(m N s n)N

→In
(λnN.m N s n)N→N

→Im
(λmN. λnN.m N s n)N→N

Part II

The Reynolds Embedding

— from Lambda to Logic

The Reynolds embedding — from types to predicates

N ≡ ∀X. (X → X) → (X → X)

↓
N∗ ≡ {nN | ∀X. ∀X X .

∀sX→X . (∀mX .m ∈ X → s m ∈ X) →
∀zX . z ∈ X → n X s z ∈ X}

The Reynolds embedding — from terms to proofs

sN→N

↓
∀nN. n ∈ N∗ → s n ∈ N∗

zN

↓
z ∈ N∗

(+)N→N→N

↓
∀mN.∀nN.m ∈ N∗ → n ∈ N∗ → m + n ∈ N∗

Doubling — from predicates to predicates

N∗ ≡
{nN |
∀X. ∀X X .

∀sX→X . (∀mX .m ∈ X → s m ∈ X) →
∀zX . z ∈ X → n X s z ∈ X}
↓

N∗‡ ≡
{(nN, n′N) |
∀X.∀X ′.∀X X×X′

.

∀sX→X .∀s′X′→X′
. (∀mX .∀m′X′

. (m,m′) ∈ X → (s m, s′ m′) ∈ X) →
∀zX .∀z′X′

. (z, z′) ∈ X → (n X s z, n′ X ′ s′ z′) ∈ X}

Doubling — from proofs to proofs

∀nN. n ∈ N∗ → s n ∈ N∗

↓
∀nN, n′N. (n, n′) ∈ N∗‡ → (s n, s n′) ∈ N∗‡

z ∈ N∗

↓
(z, z) ∈ N∗‡

∀mN.∀nN.m ∈ N∗ → n ∈ N∗ → m + n ∈ N∗

↓
∀mN,m′N.∀nN, n′N. (m,m′) ∈ N∗‡ → (n, n′) ∈ N∗‡ → (m + n, m′ + n′) ∈ N∗‡

The Abstraction Theorem — Reynolds then doubling

sN→N

↓
∀nN, n′N. (n, n′) ∈ N∗‡ → (s n, s n′) ∈ N∗‡

zN

↓
(z, z) ∈ N∗‡

(+)N→N→N

↓
∀mN,m′N.∀nN, n′N. (m,m′) ∈ N∗‡ → (n, n′) ∈ N∗‡ → (m + n, m′ + n′) ∈ N∗‡

Parametricity and weak parametricity

Halving lemma (binary implies unary)

∀nN, n′N. (n, n′) ∈ N∗‡ → n ∈ N∗

Extensiveness

∀nN, n′N. (n, n′) ∈ N∗‡ → n = n′

Parametricity

∀nN. (n, n) ∈ N∗‡

Weak parametricity (unary implies binary)

∀nN. n ∈ N∗ → (n, n) ∈ N∗‡

Part III

The Girard-Reynolds Isomorphism

Girard followed by Reynolds

N ≡ {nN | ∀X N. (∀mN.m ∈ X → s m ∈ X) → z ∈ X → n ∈ X}
↓

N◦ ≡ N ≡ ∀X. (X → X) → (X → X)

↓
N◦∗ ≡ N∗ ≡
{nN |
∀X. ∀X X .

∀sX→X . (∀mX .m ∈ X → s m ∈ X) →
∀zX . z ∈ X → n X s z ∈ X}

Girard-Reynolds isomorphism

Induction implies unary parametricity

∀n. n ∈ N → n ∈ N∗

Binary parametricity is equivalent to induction

∀n, n′. (n, n′) ∈ N∗‡ ↔ n = n′ ∧ n ∈ N

Weak parametricity holds iff

Girard followed by Reynolds is an isomorphism

(∀n. n ∈ N∗ → (n, n) ∈ N∗‡) ↔ (∀n. n ∈ N∗ ↔ n ∈ N)

Part IV

Conclusion

Related work

Girard 1972
Reynolds 1974, 1983

Böhm and Beararducci 1985
Leivant 1990

Krivine and Parigot 1990
Mairson 1991

Plotkin and Abadi 1993
Hasegawa 1994
Takeuti 1998

Related work: Models

Moggi 1986
Breazu-Tannen and Coquand 1988

Freyd 1989
Hyland, Robinson, and Rosolini 1990

Rummelhoff 2003
Møgelberg 2004

Conclusion

The Girard-Reynolds type system is
the basis for generics in Java 1.5.

Conclusion

The Girard-Reynolds type system is
the basis for generics in Java 1.5.

Girard and Reynolds will be remembered
long after Java is forgotten.

Part V

Details

Second-order lambda calculus (F2)

Type variables X,Y , Z

Types A,B,C ::= X

| A → B

| ∀X. B

Individual variables x, y, z

Terms s, t, u ::= xA

| λxA. u

| s t

| ΛX. u

| s A

Second-order lambda calculus (F2)

[xA]
···

uB

→Ix
(λxA. u)A→B

sA→B tA

→E
(s t)B

uB

∀I X does not escape
(ΛX. u)∀X. B

s∀X. B

∀E
(s A)B[A/X]

Second-order propositional logic (P2)

Predicate variables X ,Y ,Z
Propositions A,B,C ::= tC ∈ AC

| A → B

| ∀X C . B

| ∀xC .B

| ∀X. B

Predicates A,B,C ::= X C

| {xC | A}
Hypothesis labels x,y,z

Proofs s, t,u

Second-order propositional logic (P2)

[A]x
···
B

→Ix

A → B

A → B A
→E

B

B
∀I X does not escape

∀X C . B

∀X C . B
∀E

B[AC/X]

B
∀1I x does not escape

∀xC .B

∀xC .B
∀1E

B[tC/x]

B
∀2I X does not escape

∀X. B

∀X. B
∀2E

B[A/X]

β rules

(λxT . u) t =β u[t/x]

(ΛX. u) A =β u[A/X]

tC ∈ {xC | A} =β A[t/x]

A
β A =β B

B

Part VI

Girard projection

Girard projection

Propositions

(tC ∈ AC)◦ ≡ A◦

(A → B)◦ ≡ A◦ → B◦

(∀X C . B)◦ ≡ ∀X. B◦

(∀xC .B)◦ ≡ B◦

(∀X. B)◦ ≡ B◦

Predicates

(X C)◦ ≡ X

({xC | A})◦ ≡ A◦

Girard projection

[A]x
··· u

B
→Ix

A → B

◦

≡

[xA◦
]

···
u◦B◦

→Ix
(λxA◦

.u◦)A◦→B◦

 ··· s

A → B

··· t

A
→E

B

◦

≡

···
s◦A◦→B◦

···
t◦A◦

→E
(s◦ t◦)B◦

Girard projection
 ··· u

B
∀I

∀X C . B

◦

≡

···
u◦B◦

∀I
(ΛX. u◦)∀X. B◦

··· s

∀X C . B
∀E

B[AC/X]

◦

≡

···
s◦∀X. B◦

∀E
(s◦ A◦)B◦[A◦/X]

Girard projection

 ··· u

B
∀1I

∀xC .B

◦

≡
···

u◦B◦

··· s

∀xC .B
∀1E

B[tC/x]

◦

≡
···

s◦B◦

 ··· u

B
∀2I

∀X. B

◦

≡
···

u◦B◦

··· s

∀X. B
∀2E

B[A/X]

◦

≡
···

s◦B◦

 ··· t

A
β

B

◦

≡
···

t◦A◦

Part VII

Reynolds embedding

Reynolds embedding

Types

(X)∗ ≡ X X

(A → B)∗ ≡ {zA→B | ∀xA. x ∈ A∗ → z x ∈ B∗}
(∀X. B)∗ ≡ {z∀X. B | ∀X. ∀X X . z X ∈ B∗}

Reynolds embedding

[xA]
···

uB

→Ix
(λxA. u)A→B

∗

≡

[x ∈ A∗]x
··· u∗

u ∈ B∗

β
(λxA. u) x ∈ B∗

→Ix

x ∈ A∗ → (λxA. u) x ∈ B∗

∀1I
∀xA. x ∈ A∗ → (λxA. u) x ∈ B∗

···

sA→B

···
tA

→E
(s t)B

∗

≡

··· s∗

∀xA. x ∈ A∗ → s x ∈ B∗

∀1E
t ∈ A∗ → s t ∈ B∗

··· t∗

t ∈ A∗

→E
s t ∈ B∗

Reynolds embedding

···

uB

∀I
(ΛX. u)∀X. B

∗

≡

··· u∗

u ∈ B∗

β
(ΛX. u) X ∈ B∗

∀I
∀X X . (ΛX. u) X ∈ B∗

∀2I
∀X. ∀X X . (ΛX. u) X ∈ B∗

···

s∀X. B

∀E
(s A)B[A/X]

∗

≡

··· s∗

∀X. ∀X X . s X ∈ B∗

∀2E
∀X A. s A ∈ B∗[A/X]

∀E
s A ∈ B∗[A/X, A∗/X]

Part VIII

Doubling

Doubling

Propositions

(tC ∈ AC)‡ ≡ (tC , t′
C′

) ∈ A‡C×C′

(A → B)‡ ≡ A‡ → B‡

(∀X C . B)‡ ≡ ∀X C×C′
. B‡

(∀xC .B)‡ ≡ ∀xC , x′
C′

.B‡

(∀X. B)‡ ≡ ∀X, X ′.B‡

Predicates

(X C)‡ ≡ X C×C′

({xC | A})‡ ≡ {(xC , x′
C′

) | A‡}

Doubling

[A]x
··· u

B
→Ix

A → B

‡

≡

[A‡]x
··· u‡

B‡

→Ix

A‡ → B‡

 ··· s

A → B

··· t

A
→E

B

‡

≡

··· s‡

A‡ → B‡

··· t‡

A‡

→E
B‡

Doubling
 ··· u

B
∀I

∀X C . B

‡

≡

··· u‡

B‡

∀I
∀X C×C′

. B‡

··· s

∀X C . B
∀E

B[AC/X]

‡

≡

··· s‡

∀X C×C′
. B‡

∀E
B‡[A‡C×C′

/X]

Doubling

 ··· u

B
∀1I

∀xC .B

‡

≡

··· u‡

B‡

∀1I twice
∀xC , x′

C′

.B‡

··· s

∀xC .B
∀1E

B[tC/x]

‡

≡

··· s‡

∀xC , x′C
′
.B‡

∀1E twice
B‡[tC/x, t′C

′
/x′]

Doubling
 ··· u

B
∀2I

∀X. B

‡

≡

··· u‡

B‡

∀2I twice
∀X, X ′.B‡

··· s

∀X. B
∀2E

B[A/X]

‡

≡

··· s‡

∀X, X ′.B‡

∀2E twice
B‡[A/X, A′/X ′]

Doubling
 ··· t

A
β

B

‡

≡

··· t‡

A‡

β twice
B‡

