
Types and Programming Languages

Practical Exercise CW1

Security Types for a
First-order Functional Language (Parts 0 & 1)

School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/tpl

This is an individual assessed practical exercise. It will be awarded a mark out of 25.

It is one of two assessed exercises in the Types and Programming Languages course. Each

exercise is worth 10% of the final result for the module, when combined with the exam mark.

You can expect to spend 8–10 hours on this exercise, plus any time required for reading.

The deadline for completing this practical is 6pm 24th February 2006. The final page

summarises submission instructions.

The practical work for this course is on a single topic split into two assessed exercises. The topic
is the design and implementation of a security type system for the first-order functional language
FOFL which has been introduced in lectures.

• Part 0 reviews some material covered in lectures, and introduces a supplied OCaml implemen-
tation of FOFL. The implementation uses the same framework as the typecheckers accompa-
nying the course textbook (TAPL). To help understand the implementation, you are asked
to extend it in an easy way. This stage is preparatory and should be regarded as part of the
reading requirement for the course. Nevertheless, some marks are awarded for the extended
program (electronic submission).

• Part 1 introduces the topic of the exercise, which is to invent a type system for ensuring secure

information flow in programs. In Part 1 you are asked to design the rules of the type system
and prove the central type safety property for the new language (paper submission).

• Part 2 will be issued in week 8. This will ask you to implement your design by extending your
version of the FOFL typechecker from Part 0. Some further questions will be posed based on
improvements to the system. This part will have a wholly electronic submission.

As usual, you should read through the whole document carefully before beginning work. Further-
more, although Parts 1 and 2 are separated into different exercises, it may help to experiment with
implementation during Part 1 to help get the definitions right. But do not spend overly long on a
polished program, since most marks are awarded for the written work in this exercise.

In case of questions or difficulties, please use the course newsgroup eduni.inf.course.tpl in
the first instance.

1

Part 0. Background: FOFL and its implementation

Recall the language FOFL introduced in lectures. It is a first-order functional language with a
succinct definition. As usual, we build up the language definition in three stages: (1) the abstract
syntax; (2) the operational semantics, and (3) the typing rules. The typing rules are designed to
rule out certain ill-behaved programs.

Syntax

The abstract syntax of FOFL is given by the grammar:

t ::= true | false | 0 | succ t | pred t | iszero t | if t then t else t

| x | f(t1, . . . , tn)

T ::= Nat | Bool

d ::= def f(x1 : T1, . . . , xn : Tn) : T = t

P ::= prog d∗ gorp

Where t is used for the syntactic category of terms, T is used for types, d for function definitions and
P for programs. As usual, x ranges over a set of variables. We also use another disjoint category
of identifiers, the function names, ranged over by f . By convention, a program is not allowed to
define the same function name more than once.

From the grammar we can see that basic FOFL has a trivial, flat type structure. Every expression
either denotes a natural number or a boolean value, so there are only two kinds of types. A FOFL
program consists of a sequence of definitions for functions which may be freely (perhaps mutually)
recursive. For example, here is a program defining functions which compute whether a given number
is even or odd, by subtracting until we reach zero:

prog

def iseven(x:Nat): Bool = if iszero x then true else isodd(pred x)

def isodd(x:Nat):Bool = if iszero x then false else iseven(pred x)

gorp

There are more example programs included with the supplied implementation of FOFL.

Small-step operational semantics

To give a small-step semantics to FOFL, we need to define the syntactic category of values, a subset
of the category of terms, ranged over by v:

v ::= true | false | nv

nv ::= 0 | succ nv

The rules giving the operational semantics for FOFL appear in Table 1. Notice that for a given term,
at most one evaluation rule can apply. The rule for evaluating the application of a function ensures
that all of the arguments to the function are reduced to values first, from left to right. Once values
are obtained for all arguments, the abstract machine simulates a function call by simultaneously
substituting the argument values for the formal parameters in the function’s definition.

2

t −→ t′

if true then t1 else t2 −→ t1

if false then t1 else t2 −→ t2

t −→ t′

if t then t1 else t2
−→ if t′ then t1 else t2

t −→ t′

succ t −→ succ t′

pred 0 −→ 0

pred (succ nv) −→ nv

t −→ t′

pred t −→ pred t′

iszero 0 −→ true

iszero (succ nv) −→ false

t −→ t′

iszero t −→ iszero t′

P contains def f(~x : ~T) : T = tf

f(~v) −→ [~x 7→ ~v] tf

ti −→ t′i

f(~v, ti,~t) −→ f(~v, t′i,~t)

Table 1: FOFL Evaluation Rules (in program P)

Typing

The typing rules for FOFL are shown in Table 2. Because terms may contain variables, we need
to perform type-checking in a context which declares the types of variables. Contexts are lists of
bindings of types to variables:

Γ ::= ∅ | Γ, x : T

As usual, we follow the convention that any context that appears in a valid typing judgement must
not bind the same variable more than once.

The rules define two typing judgements:

Γ ` t : T term t has type T in context Γ
` P P is a well-typed program

Notice that the second definition depends on the first, but the definition of Γ ` t : T assumes that
a particular program P has been given to extract the type information from function definitions.

Properties of FOFL

Recall from lectures that FOFL satisfies the syntactic characterisation of type safety. Given a well-
typed FOFL program, we want to show that evaluating a closed, typable term will end with a value.
This is given by the combination SAFETY = PROGRESS + PRESERVATION.

Theorem 1 (Progress) If ` t : T then either t is a value, or there exists a t′ such that t −→ t′.

Theorem 2 (Preservation) If ` t : T and t −→ t′ then ` t′ : T too.

You should make sure that you can reproduce the detailed proofs of these theorems as sketched
in lectures. For Progress, the canonical forms lemma is useful. For Preservation, the substitutivity

of the typing judgement is useful. If Preservation is generalised to hold in a context Γ (which

3

Γ ` t : T

Γ ` true : Bool

Γ ` false : Bool

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T

Γ ` 0 : Nat

Γ ` t : Nat

Γ ` succ t : Nat

Γ ` t : Nat

Γ ` pred t : Nat

Γ ` t : Nat

Γ ` iszero t : Bool

x : T ∈ Γ

Γ ` x : T

P contains def f(~x : ~T) : T = tf
for each i, Γ ` ti : Ti

Γ ` f(~t) : T

` P

for each def f(~x : ~T) : T = tf in P ,

~x : ~T ` tf : T

` P

Table 2: FOFL Typing Rules (for program P)

is necessary for the induction to go through when binding terms such as λ-abstraction or case

constructs are included), the thinning lemma (or weakening and permutation separately) are useful.
In this case, for the typing judgement which checks FOFL programs, a renaming lemma may be
used to make sure that the variables xi are disjoint from variables already in the context.

Implementation of FOFL

You are supplied with an implementation of FOFL, available from the course web page:

http://www.inf.ed.ac.uk/teaching/courses/tpl/fofl.tar.gz

You should download this file and unpack it with

tar xpf fofl.tar.gz

This will make a directory fofl which contains the OCaml code. On a Linux system with OCaml
installed you should be able to type make to compile the typechecker. To run it on one of the
example files use a command like this:

./f example-evenodd.f

You should examine the implementation in the files syntax.ml and core.ml carefully, especially
if you have not studied the typechecker code accompanying the course textbook TAPL so far. It
will be useful to read (the short) Chapter 4, and in case of difficulties with the language, to refer
to OCaml resources on the Web at http://www.caml.org.

You should be able to relate the implementation to the formal description of the FOFL language
above. Can you find where the conventions about non-duplication of variables and function names
are enforced? How is simultaneous substitution defined and where is it used? How is the FOFL
program declared in a file made into a parameter for the typechecker?

4

Warm-up exercise

Extend the FOFL language by adding some structured types chosen from those studied in lectures.
At a bare minimum, you should add a type constructor for unit types (see Chapter 11 of TAPL).
Recall that for unit types, the syntax is extended thus:

t ::= · · · | unit

T ::= · · · | Unit

v ::= · · · | unit

There are no new evaluation rules, unit is already a value; it is the unique and only value of the
type Unit so it has no destructor. The single new typing rule is:

Γ ` unit : Unit

To make this simple extension, you will need to change several files. Specifically, you should

1. Modify the file syntax.ml which defines the abstract syntax, including the auxiliary functions
to manipulate it. Notice that the datatypes are revealed in the interface file syntax.mli so
you must repeat your extensions there.

2. Modify the files lexer.mll and parser.mly which are inputs to the parser generator. In
lexer.mll you need to add new keywords following the pattern for the others, and in
parser.mly you need to add new productions for ATerm and AType.

3. In core.ml you should extend the evaluation function and the type-checking function.

If you have difficulty doing this, you can cheat by referring to the full implementation of simply-
typed lambda calculus which is supplied with TAPL (the type checker is called fullsimple). Try
to resist the temptation to copy the code without having thought about it first!

Your work on this warm-up exercise should be submitted electronically using the submit com-
mand. Inside your working fofl directory you should issue the command make clean to remove
generated files and backup files. Then submit the entire directory directly under the name fofl.
See the final page for the actual command you should type.

NB: if you add further structural types beyond unit types, it might be sensible to make a copy
of the implementation with just unit types to avoid making your job harder in Parts 1 and 2.

[8 marks]

At the same time as adding unit types, it would be useful to extend the language with a
mechanism for sequencing. The term t1; t2 is evaluated by evaluating t1 followed by t2. The result
of evaluating t1 is discarded, so its type should be Unit. In TAPL (p.120), Pierce shows that this
can be treated as a new construct in the language, or as the abbreviation (λx : Unit. t2)t1. FOFL
doesn’t have λ-terms, but it is still possible to encode t1; t2. Can you see how? The answer is
revealed further below.

5

Part 1: Designing Security Types

When writing security-critical applications, it is wise to keep in mind which pieces of data should
be regarded as confidential and which it is safe to reveal. In multi-level security systems a series of
levels are used to classify data and owners. Typical levels (e.g. used by the military) are:

unclassified ≤ confidential ≤ secret ≤ topsecret

A person with only confidential clearance cannot read secret or top secret documents; this is an
example of the no read up (or simple-security) condition. To prevent information flowing in the
wrong direction, we should also prevent somebody with top-secret clearance writing a secret doc-
ument, lest they let some top-secret facts escape unwittingly. This is an example of the no write

down condition (also known as the ∗-property). Of course, the no write down condition is rather too
strong in practice, so some controlled method of releasing information or declassification is needed.

Multi-level security has typically been implemented using run-time monitoring to enforce access
control and prevent information leakage. But we can do better by programming within a simple,
efficient and static type system.

Adding security levels to FOFL

We will add security levels by labelling types with natural numbers. A new syntactic category of
security-annotated types has the single production:

S ::= T [l]

where l is a natural number, the security level. Larger numbers represent higher security levels.
As a shorthand, level 0 types (which classify public data) can have their labels omitted, so we may
write just Nat instead of Nat[0], for example.

We want to prevent information flowing from high levels to lower ones. In FOFL, information
is passed around by calling and returning from functions. Function arguments are data sinks and
function results are data sources. For example, some basic IO functions might be given unclassified
typings:1

def putnum(x:Nat [0]): Unit [0] = ?

def getnum (): Nat[0] = ?

(writing the level 0 just to be explicit). The function putnum acts as a data sink, and the function
getnum is a data source.2 We can give some more interesting typings to functions that should be
aware of security levels. For example,

def genkey (): Nat [10] = ?

def encrypt(key:Nat [10], plaintext :Nat [2]): Nat = ?

def decrypt(key:Nat [10], ciphertext :Nat):Nat [2] = ?

Keys are very sensitive so have a high security level. The plaintext passed to the encryption function
is also sensitive, so has a non-zero security level, but it is perhaps less critical than the key. The

1The supplied implementation of FOFL allows function bodies to be omitted by giving ? as above. This allows
us to assume external or foreign functions might be invoked with the types that we have declared.

2In a pure functional language, getnum would have to be a rather boring constant function; in impure languages

like OCaml, it could refer to some global state, for example, the current position in the input stream, and return a
different result on successive invocations. From the point of view of our type system, we can be pure or impure.

6

result of encryption is public: after all, it should encode the data so that it may be safely transmitted
across an unsecured (public) channel

The following terms should be typable: decrypt(genkey(),3762) (okay since the levels and
types match exactly); encrypt(genkey(),1234) and even encrypt(7546,1234) (it is permitted
to use low security values where high ones are required: this is “reading down”).

Programs with security flaws

Some terms should not be typable. For example, this function

def stupidshowsecret (key:Nat [10]): Unit = putnum(key)

type-checks without security levels but should be prohibited for violating security: it passes a high
security data value to a public sink. This is an example of an explicit information flow which
violates the security policy on levels.

Here is a rather more sophisticated attempt to reveal a key:

def seq(x:Unit ,y:Unit): Unit = unit

def showsecret (key:Nat [10]): Unit =

if iszero(key) then putnum (0) else

seq(if isodd(key) then putnum (1) else putnum (0),

showsecret (divide(key ,2)))

This time showsecret prints out the key in (reversed) binary. We should prevent this! However,
the calls to putnum now take ordinary numbers as arguments. This is an example of an implicit

information flow which occurs because the low-security function calls occur inside the branch of a
test on a high-security value.

How might the type system reject this example? First, notice that to type showsecret we
expect that isodd will reveal some information flow. In the new language we must give security
levels to every function argument and result. Since isodd leaks information from input to output,
its result type should have the same level as its input argument type, for example:

def isodd(x:Nat [10]): Bool [10] = ...

(whereas isodd with a result level of Bool[0] should be prohibited). In general, even a zero test on
a high-security value reveals partial information, so the term

if iszero x then putnum (0) else putnum (1)

should not be allowed in a context where x has a higher security level than the argument of putnum.
So to prevent this, the type system needs to bear in mind the level of the guard when the branches
of a conditional are examined.

Discussion Of course, an honest programmer isn’t likely to accidently write the kind of code like
the showsecret function! If we can show that deliberately clever attempts like this are caught by
the type system, perhaps we increase confidence that even “accidently clever” attempts are also
caught. More importantly, if we are using our type system to provide certification for mobile code
executed elsewhere, we have to suppose a malicious agent will try to be clever and defeat the type
system by supplying specially designed attack code. But in general, as well as thinking hard about
code examples which should be rejected, it may be useful to have a proof that characterises that a
type system is “good enough” and rejects enough of the bad programs we want it to.

7

Analysing the Problem

In the next few pages we work towards a specific solution to the problem of how to add security
types to FOFL. This solution is restricted and solves only the explicit flow case. For an extra
challenge, try to find your own solution before reading the suggestions below, or try to extend the
given solution to cover implicit flows too.

Understanding security levels

An initial question after considering the examples above should be: where do security levels arise?

The only place that interesting security levels are introduced in the examples is as a result of
applying functions, for example with the definition:

def genkey (): Nat [10] = ?

then genkey() stands for a high-security natural number.
Sometimes it’s necessary to put secrets into programs; we might like to do that with a function

definition such as:

def mysecret (): Nat [10] = 12345

then mysecret() is also a high-security number. But now the usual operational semantics is entitled
to rewrite mysecret() to 12345 and there is a risk of losing its secret status!

For this reason, we shall introduce stamped values which are values “stamped” with a security
level. Here is an evaluation with a stamped value:

succ(mysecret()) --> succ(12345[10]) --> 12346[10]

Notice that succ preserves the stamp. Stamps are the key to tracking levels dynamically.
A second question is when are security levels enforced? Again, the labels on functions are the

only points where this happens in the examples. If we stamp values before invoking functions,
we can check that the stamps are compatible with the declared levels. Moreover, stamped values
should survive being passed as arguments, e.g., consider the program and sample evaluation:

def eq(x:Nat[10],y:Nat [10]): Bool [10] = ? /* secure equality test */

def hash(x:Nat [0]): Nat [5] = ? /* secure hash of argument */

def comparehash (data:Nat[0],

expected :Nat [10]): Bool [10] = eq(hash(data),expected)

comparehash (12971238123 , mysecret ()) -->

comparehash (12971238123[0] ,12345[10]) -->

eq(hash (12971238123[0]) ,12345[10]) -->

eq(H[5] ,12345[10]) -->

eq(H[10] ,12345[10]) -->

false [10]

where the final two steps are outwith the language (i.e. relying on the external primitives eq and
hash; here, H stands for some number). The evaluation gives a hint about a suitable evaluation
process for function application.

Notice that the term

comparehash (mysecret (), mysecret ())

8

should get stuck, because the first argument reduces to a value stamped with the security level 10
rather than the expected level 0. On the other hand,

comparehash (12971238123 ,12345)

would make progress: unstamped integers can be stamped with an arbitrary level to match the
desired argument level.

The final question concerning security levels is, when do security levels change? The idea here is
that security levels may change whenever information flows, for example, such as when computing
a partial result. If we multiply a high-security integer by a low security one, we should get a
high-security integer. The simple case of succ above showed that already.

However, user-defined functions are different: there is no assumption that information can flow
between the inputs,3 nor is there an assumption that information flows from function input to
function output: that must be reflected in the levels which are checked by the type system.

There are two possibilities for information flow. High level inputs can be disconnected from the
output suggesting that no flow happens, e.g., the constant function:

def mynumber (key:Nat [10]): Nat[0] = 5

should be type safe, because indeed there is no information flow from the high-security input to
the result. Alternatively, the argument may appear in a position where it contributes to the result,
such as:

def myothernumber(key:Nat [10]): Nat [0] = succ(key)

and this function should certainly not be type safe! (However, with a return security level of 10 it
would be okay). On the other hand, it is safe to pass a low-security source to a a higher security
sink: this is “write up”, it simply assures us that the value we gave is going to be treated as secure.

def makemysecret (x:Nat [10]): Nat [10] = pred(key)

makemysecret (4[4]) --> makemysecret (4[10]) --> pred (4[10]) --> 3[10]

This demonstrates a simple form of subtyping: a low security type is a subtype of a higher security
one.

The motivating examples in the practical mentioned the side-effecting function putnum as an
obvious low-security sink :

def putnum(x:Nat [0]): Unit [0]

Notice that the important low security here is on the input, not on the output level, so it is
reasonable to apply the subsumption rule and give applications of putnum also a higher type:

putnum (3[0]): Unit [10]

This is fine because we interpret the label as referring to the security level of the result after calling
putnum. In fact since the unit type contains no information (only one value), security levels for
Unit are not obviously meaningful.

These examples should help explain explicit information flow, more explicitly. Implicit flow
is (implicitly) more tricky. Both of the following should be disallowed (assuming key has a high
security level):

3that would be a risky assumption in the presence of references and a global state, of course!

9

if iszero(key) then putnum (0) else putnum (1)

putnum(if iszero(key) then 0 else 1)

The type system and evaluation rules we consider here will prevent the second case but not the
first. In fact, the first case gets an elevated Unit[10] type like that shown above, which we can
understand as telling us that a high-security value has contributed to a side-effect; however, dealing
with implicit flow in the evaluation rules needs further extensions. So we will follow the advice
originally given in the practical exercise and solve the problem just for explicit flow.

Designing the type system

After these further explorations we consider some design decisions for the formal description.

Types. We are asked to add security levels by labelling types with natural numbers:

S ::= T [l]

If you have only primitive types like Nat, Bool and Unit in your language, then a type simply
becomes one of these annotated with a level. (With structured types you need to consider whether
to nest levels — and what does that mean? — or do the simpler thing of keeping one level for the
whole type).

The examples shown only include a few levels and any program can only mention a finite number
of levels. So it’s reasonable to assume levels are a fixed set of natural numbers, say l ∈ {0 . . . 10}.
(It might help in some cases to assume a maximal security level; here we don’t rely on it).

Terms and values. First we extend the syntax for values:

v ::= true | false | nv

nv ::= 0 | succ nv

sv ::= v[l]

The new case of stamped values sv is what was used above. A terminating computation should end
with a stamped value.

It is tempting to also introduce a term former to assign security levels to terms, but the examples
above show that this isn’t necessary, we could simply define dedicated coercion functions, such as:

def level10(x:Nat [0]): Nat [10] = x

Then writing level10(5123) should be good enough to stamp the value in the operational seman-
tics. However, since the safety theorems require that values are a subset of terms, we must extend
terms with stamped values as well:

t ::= · · · | sv

It’s not necessary for the programmer to be able to write stamped values directly (compare with
the case for references where we add locations to the syntax for terms).

Here’s what we need to do next:

(i) Design evaluation rules which capture a run-time model of security monitoring. Terms
which have a run-time security violation should get stuck.

(ii) Design typing rules which guarantee that typable terms do not generate security violations,
i.e. they do not get stuck in our evaluation rules.

(iii) Prove the theorems which establish type safety formally.

10

(i) The evaluation relation (abstract machine)

The idea of proving type safety for our language is to show that terms that are ill-behaved opera-
tionally cannot be given types. In this setting, “ill-behaved” means having a type error as usual,
or making a security violation.

To check for security violations, the abstract machine needs to know about security levels.
Notice that this does not mean that in a real machine the security levels would necessarily need to
be monitored, because the type safety proof will tell us that if we type-check terms before executing
them, we do not need to monitor security levels. This is exactly analogous to the situation with
integers and booleans: the abstract machine we formalise does see the difference between integers
and booleans, by the structure of the formal syntax. This is how terms like succ(false) can get
stuck. On a real machine, the syntactic distinction is not there and (without run-time type tags)
we just have a collection of bits, so it is possible to confuse data of one type with data of another.

What does the machine need to know about security levels? To be able to check levels on
function calls, it needs to know the levels assigned to argument positions. To be able to stamp the
result of evaluating a function (possibly promoting the level), it needs to know the levels assigned
to result positions.

Recall the usual evaluation rules for functions:

f(~v) −→ [~x 7→ ~v] tf

ti −→ t′i

f(~v , ti,~t) −→ f(~v , t′i,~t)

where the program P contains def f(~x : ~T) : T = tf . The idea is that once all of the arguments
become values, we can substitute into the body; the second rule evaluates the first non-value
argument towards a value.4 For values tagged with levels, we can change the first rule to:

f(~v [~l]) −→ [~x 7→ ~v [~l]] tf

where the SFOFL program P contains a definition with levels, def f(~x : ~T [~l]) : T [l] = tf (this
time the vector notation abbreviates a list of arguments of the form xi : Ti[li]). The reference to
~l on the left hand side implies that the machine must check that the stamped values have exactly

the right stamps.
But this rule does not deal with stamping the result. If we evaluate level10(5123) then the

result is just 5123 again. To handle stamping the result, we will augment the evaluation relation
with a target security level l, writing t −→l t′. The idea is that evaluation progresses at the target
level until a value is reached, and then that value gets stamped with the target level. The function
rules now become:

f(~v) −→l [~x 7→ ~v] tf

ti −→li t′i

f(~v , ti,~t) −→l f(~v , t′i,~t)

This works fine for outermost calls like level10(5123) (try it), but for nested applications we may
be setting the target level higher than the result level of a function. (Consider the comparehash

4Beware the vector notation shorthand: the vector ~v has different lengths in the two rules, of course.

11

example earlier). This is safe because we can raise levels; setting it lower would of course be a security
violation (level10(5123) should evaluate to 5123[10] or higher, never 5123[4]). Therefore we let
the evaluation of functions take place at any level which dominates the level of the function result.

Similarly, if we evaluate a basic operation like iszero, we can make progress at any level which
dominates the level of the argument value. (If the argument level exceeds the target level, it is not
worth going further). Notice that stamped values now serve as the final result, so the rules that
mention values must be adjusted to include stamps. An example for E-IszeroSucc is given in
Table 3, along with the specimen function rules, adjusted as described.

t −→l t′

k ≤ l

iszero 0[k] −→l true[k]
(E-IszeroSucc)

l ≤ l′

f(~v [~l]) −→l′ [~x 7→ ~v [~l]] tf
(E-FunBody)

ti −→li t′i l ≤ l′

f(~v [~l], ti,~t) −→l′ f(~v [~l], t′i,~t)
(E-FunArg)

Where def f(~x : ~T [~l]) : T [l] = tf is in P

Table 3: Some SFOFL Evaluation Rules (in program P)

In addition to the modified FOFL rules, we need two crucial new rules, E-Lab to stamp unla-
belled values v with l to become v[l], and E-Sub to promote stamped values v[k] to v[l] when it
is safe (the rule requires strict inequality, not k ≤ l, why?). One final subtlety is that we need an
extra rule E-SuccLab for succ to normalise labels.

Exercise. Complete the definition of the evaluation rules following the above guidelines. You
should have 15 rules in total. [6 marks]

(ii) Defining the typing relation

The typing rules are more straightforward than the evaluation relation. The judgements are:

Γ ` t : T [l] ` P

Each typing rule is modified to have labels added, and labels are added to types in the context.
Obviously, the rule for function applications must check that the argument label for each argument
ti matches the declared label li from the program.

One new rule, T-Lab, is needed for typing labelled values, and another, T-Sub, for promoting
labels. The latter is a form of subsumption, but without structured types it isn’t really worth
introducing a special subtyping judgement because we simply have T [l] <: T [l′] exactly if l ≤ l′.

12

An interesting question is over the typing of the statement if t1 then t2 else t3. With implicit
flows in mind, a possible form for the rule is to require the same security level on each position:
intuitively this reflects that if we compute some value depending on the guard t1, then it should
have a level at least as high.

Exercise. Complete the definition of the evaluation rules following the above guidelines. You
should have 11 rules in total for the main judgement. [6 marks]

(iii) Proving the safety theorems

The safety theorems are fairly straightforward modifications. Notice that the Progress theorem
captures our intention that evaluation proceeds at level l until we reach a value stamped with l.

Theorem 3 (Progress) If ` t : T [l] then either t is an l-labelled value, or there is a t′ such that

t −→l t′.

Theorem 4 (Preservation) If Γ ` t : T [l] and t −→l t′ then Γ ` t′ : T [l] too.

We need the usual lemmas to prove the safety theorems. In addition, to prove Progress we
require one auxiliary lemma given below. (The proof of this gives you more hints about the forms
of the evaluation rules!)

Lemma 5 (Raised level progress) If t −→l t′ and l ≤ l′ then there is a t′′ such that t −→l′ t′′.

Proof. By induction on the derivation of t −→l t′. Consider the last case used:

Case E-Lab: then t = v and t′ = v[l]. By the same rule, we have v −→l′ v[l′].

Case E-Sub: then t = v[k] and t′ = v[l] for k < l. Then by the same rule we have
v[k] −→l′ v[l′] since k < l′.

Case E-FunBody, E-FunArg: We have t −→l′ t′ by the same rule again because
we may increase l and still satisfy the premise.

Case others: the result follows for all other rules either immediately by raising the
target level in the same rule, or by applying the the induction hypothesis and then
using the rule again. �

Exercise. Complete the safety theorem proofs. You should write up at least some representative
cases (but preferably whole proofs, for practice). Variables and functions are suggested in the
practical handout because they are the key constructs of FOFL, and you should also include some
cases of values, because they help understand the system, and also cases to test the new typing and
evaluation rules in SFOFL. Furthermore, you should state the Canonical Forms and Substitution
lemmas in the form you need them (proofs are not necessary but you should convince yourself they
hold). [5 marks]

13

Additional resources. To give you more ideas about the topic and answers, you may like to
study TAPL Chapter 15, or find a research paper on security typing. Two good starting places for
research on security typing are:

Chapter 6 of Secure Communicating Systems, Michael R A Huth, CUP 2001.

Language-Based Information-Flow Security, Andrei Sabelfeld and Andrew C. Myers,
IEEE Journal on Selected Areas in Communications, Vol 21, No 1. January 2003.

The second reference is available at http://www.cs.chalmers.se/∼andrei/jsac.pdf.

Submission Instructions

This practical uses the School of Informatics standard electronic submission mechanism. The mech-
anism is based on the command-line program submit, which must be executed from your DICE
account. The submit program takes a copy of the file you want to submit and puts it into a secure
location for later retrieval by the marker.

When your work is ready, you should submit it by typing:

cd fofl

make clean

cd ..

submit cs4 tpl cw1 fofl

Later submissions will override earlier ones.

Please follow these instructions carefully, uniform filenames help us write test and print scripts to
assist with marking. In particular, please do not alter any of the file names or function names in
the starting code.

Your offline submission should be handed in to the ITO, clearly labelled with Types and Pro-

gramming Languages Practical 1 and with your name and matriculation number.

The deadline for completing both parts of this practical is 6pm 24th February 2006.

David Aspinall
9th February 2006

2006/02/08 16:25:20.

14

