Types and Programming Languages
Practical Exercise CW1

Security Types for a
First-order Functional Language
HINTS FOR PART 1

School of Informatics
University of Edinburgh
http://www.inf.ed.ac.uk/teaching/courses/tpl

This document contains some hints for solving Part 1 of the first assessed coursework exercise.
It guides you towards a particular solution of a simplified form of the exercise; other solutions and
design choices are also possible. The simplification is to only deal with explicit information flow.

If you have an alternative solution you should give details and carefully motivate its operation
back to the original specification; since this is a rather challenging problem, incomplete solutions
will be accepted (but as a minimum, they must solve the explicit flow case).

The original marking guide will be applied if you follow these hints, except that because the hints
provide the informal explanation asked for in the practical document, 12 marks will be allocated
for the definitions (6 marks each for steps 1 and 2 below).

The submission deadline is the same as for the second exercise, namely 5pm 17th March
2004. Submit your work as described in Part 1.

1 Understanding security levels

Before reading this document you should review the motivation and examples given in the practical
exercise. An initial question after reading the examples through should be: where do security levels
arise? The only place that interesting security levels are introduced in the examples is as a result
of applying functions, for example with the definition:

def genkey():Nat[10] = 7

then genkey () stands for a high-security natural number.
Sometimes it’s necessary to put secrets into programs; we might like to do that with a function
definition such as:

def mysecret ():Nat[10] = 12345

then mysecret () is also a high-security number. But now the usual operational semantics is entitled
to rewrite mysecret () to 12345 and there is a risk of losing its secret status!

http://www.inf.ed.ac.uk/teaching/courses/tpl

For this reason, we shall introduce stamped values which are values “stamped” with a security
level. Here is an evaluation with a stamped value:

succ(mysecret()) --> succ(12345[10]) --> 12346[10]

Notice that succ preserves the stamp. Stamps are the key to tracking levels dynamically.

A second question is when are security levels enforced? Again, the labels on functions are the
only points where this happens in the examples. If we stamp values before invoking functions,
we can check that the stamps are compatible with the declared levels. Moreover, stamped values
should survive being passed as arguments, e.g., consider the program and sample evaluation:

def eq(x:Nat[10],y:Nat[10]):Bool[10] = ? /* secure equality test */
def hash(x:Nat [0]):Nat[5] = 7 /% secure hash of argument */

def comparehash (data:Nat[0],
expected:Nat [10]) : Bool [10] = eq(hash(data),expected)

comparehash (12971238123 ,mysecret ()) -->
comparehash (12971238123[0],12345[10]) -->
eq(hash (12971238123[0]) ,12345[10]) -->
eq(H[5],12345[10]) -->

eq(H[10] ,12345[10]) -->

false[10]

where the final two steps are outwith the language (i.e. relying on the external primitives eq and
hash; here, H stands for some number). The evaluation gives a hint about a suitable evaluation
process for function application.

Notice that the term

comparehash (mysecret () ,mysecret ())

should get stuck, because the first argument reduces to a value stamped with the security level 10
rather than the expected level 0. On the other hand,

comparehash (12971238123 ,12345)

would make progress: unstamped integers can be stamped with an arbitrary level to match the
desired argument level.

The final question concerning security levels is, when do security levels change? The idea here is
that security levels may change whenever information flows, for example, such as when computing
a partial result. If we multiply a high-security integer by a low security one, we should get a
high-security integer. The simple case of succ above showed that already.

However, user-defined functions are different: there is no assumption that information can flow
between the inputs,! nor is there an assumption that information flows from function input to
function output: that must be reflected in the levels which are checked by the type system.

There are two possibilities for information flow. High level inputs can be disconnected from the
output suggesting that no flow happens, e.g., the constant function:

def mynumber (key:Nat [10]):Nat[0] = 5

Ithat would be a risky assumption in the presence of references and a global state, of course!

should be type safe, because indeed there is no information flow from the high-security input to
the result. Alternatively, the argument may appear in a position where it contributes to the result,
such as:

def myothernumber (key:Nat[10]):Nat [0] = succ(key)

and this function should certainly not be type safe! (However, with a return security level of 10 it
would be okay). On the other hand, it is safe to pass a low-security source to a a higher security
sink: this is “write up”, it simply assures us that the value we gave is going to be treated as secure.

def makemysecret (x:Nat [10]):Nat[10] = pred(key)

makemysecret (4[4]) --> makemysecret (4[10]) --> pred(4[10]) --> 3[10]
This demonstrates a simple form of subtyping: a low security type is a subtype of a higher security
one.

The motivating examples in the practical mentioned the side-effecting function putnum as an
obvious low-security sink:

def putnum(x:Nat[0]):Unit [0]

Notice that the important low security here is on the input, not on the output level, so it is
reasonable to apply the subsumption rule and give applications of putnum also a higher type:

putnum (3[0]) : Unit [10]

This is fine because we interpret the label as referring to the security level of the result after calling
putnum. In fact since the unit type contains no information (only one value), security levels for
Unit are not obviously meaningful.

These examples should help explain explicit information flow, more explicitly. Implicit flow is
(implicitly) more tricky. Both of the following should be ruled out (assuming key has a high security
level):

if iszero(key) then putnum(0) else putnum(1l)
putnum (if iszero(key) then 0 else 1)

The type system and evaluation rules we consider here will prevent the second case but not the
first. In fact, the first case gets an elevated Unit [10] type like that shown above, which we can
understand as telling us that a high-security value has contributed to a side-effect; however, dealing
with implicit flow in the evaluation rules needs further extensions. So we will follow the advice
originally given in the practical exercise and solve the problem just for explicit flow.

2 Designing the type system
After these further explorations we consider some design decisions for the formal description.
Types. We are asked to add security levels by labelling types with natural numbers:

S = T[]

If you have only primitive types like Nat, Bool and Unit in your language, then a type simply
becomes one of these annotated with a level. (With structured types you need to consider whether

3

to nest levels — and what does that mean? — or do the simpler thing of keeping one level for the
whole type).

The examples given only include a few levels and any program can only mention a finite number
of levels. So it’s reasonable to assume levels are a fixed set of natural numbers, say [€ {0...10}.
(It might help in some cases to assume a maximal security level; here we don’t rely on it). Terms
and values. First we extend the syntax for values:

v = true | false | nv
nv == 0 | succnw
sv = o[l

The new case of stamped values sv is what was used above. A terminating computation should end
with a stamped value.

It is tempting to also introduce a term former to assign security levels to terms, but the examples
above show that this isn’t necessary, we could simply define dedicated coercion functions, such as:

def levellO(x:Nat[0]):Nat[10] = x

Then writing 1level10(5123) should be good enough to stamp the value in the operational seman-
tics. However, since the safety theorems require that values are a subset of terms, we must extend
terms with stamped values as well:

t = - | sv

It’s not necessary for the programmer to be able to write stamped values directly (compare with
the case for references where we add locations to the syntax for terms).

Here’s what we need to do next:

1. Design evaluation rules which capture a run-time model of security monitoring. Terms
which have a run-time security violation should get stuck.

2. Design typing rules which guarantee that typable terms do not generate security violations,
i.e. they do not get stuck in our evaluation rules.

3. Prove the theorems which establish type safety formally.

2.1 The evaluation relation (abstract machine)

The idea of proving type safety for our language is to show that terms that are ill-behaved opera-
tionally cannot be given types. In this setting, “ill-behaved” means having a type error as usual,
or making a security violation.

To check for security violations, the abstract machine needs to know about security levels.
Notice that this does not mean that in a real machine the security levels would necessarily need to
be monitored, because the type safety proof will tell us that if we type-check terms before executing
them, we do not need to monitor security levels. This is exactly analogous to the situation with
integers and booleans: the abstract machine we formalise does see the difference between integers
and booleans, by the structure of the formal syntax. This is how terms like succ(false) can get
stuck. On a real machine, the syntactic distinction is not there and (without run-time type tags)
we just have a collection of bits, so it is possible to confuse data of one type with data of another.

What does the machine need to know about security levels? To be able to check levels on
function calls, it needs to know the levels assigned to argument positions. To be able to stamp the

4

result of evaluating a function (possibly promoting the level), it needs to know the levels assigned
to result positions.
Recall the usual evaluation rules for functions:

f(ﬁv ti, E) - f(ﬁa té? E)
where the program P contains def f(z : T) : T = ty. The idea is that once all of the arguments

become values, we can substitute into the body; the second rule evaluates the first non-value
argument towards a value.? For values tagged with levels, we can change the first rule to:

f@]) — [= o[l]]
where the SFOFL program P contains a definition with levels, def f(z' : T[l]) : T[l] = t; (this
time the vector notation abbreviates a list of arguments of the form x; : T;[l;]). The reference to
[on the left hand side implies that the machine must check that the stamped values have exactly
the right stamps.

But this rule does not deal with stamping the result. If we evaluate 1evel10(5123) then the
result is just 5123 again. To handle stamping the result, we will augment the evaluation relation
with a target security level [, writing t —; t'. The idea is that evaluation progresses at the target
level until a value is reached, and then that value gets stamped with the target level. The function
rules now become:

f@) — (& = 0ty

f}l' —l f};
f(0, b5,) —1 f(T,8,F)
This works fine for outermost calls like 1evel10(5123) (try it), but for nested applications we may
be setting the target level higher than the result level of a function. (Consider the comparehash
example earlier). This is safe because we can raise levels; setting it lower would of course be a security
violation (1evel10(5123) should evaluate to 5123 [10] or higher, never 5123[4]). Therefore we let
the evaluation of functions take place at any level which dominates the level of the function result.

Similarly, if we evaluate a basic operation like iszero, we can make progress at any level which
dominates the level of the argument value. (If the argument level exceeds the target level, it is not
worth going further). Notice that stamped values now serve as the final result, so the rules that
mention values must be adjusted to include stamps. An example for E-ISZEROSUCC is given in
Table 1, along with the specimen function rules, adjusted as described.

In addition to the modified FOFL rules, we need two crucial new rules, E-LAB to stamp unla-
belled values v with [to become v[l], and E-SUB to promote stamped values v[k] to v[l] when it
is safe (the rule requires strict inequality, not k <[, why?). One final subtlety is that we need an
extra rule E-SuccLAB for succ to normalise labels.

Exercise. Complete the definition of the evaluation rules following the above guidelines. You
should have 15 rules in total. [6 marks|

2Beware the vector notation shorthand: the vector ¢ has different lengths in the two rules, of course.

tﬁl f}/

(E-IszeroSucc)

= — = (E-FunBoby)

(E-FUNARG)

— =

Where def f(z : T'[l]) : T[l] =ty isin P

T
Table 1: Some SFOFL Evaluation Rules (in program P)

2.2 Defining the typing relation

The typing rules are more straightforward than the evaluation relation. The judgements are:
L'k t: T[] - P

Each typing rule is modified to have labels added, and labels are added to types in the context.
Obviously, the rule for function applications must check that the argument label for each argument
t; matches the declared label [; from the program.

One new rule, T-LAB, is needed for typing labelled values, and another, T-SUB, for promoting
labels. The latter is a form of subsumption, but without structured types it isn’t really worth
introducing a special subtyping judgement because we simply have T'[l] <: T[l'] exactly if [<1'.

An interesting question is over the typing of the statement if ¢; then ¢y else t3. With implicit
flows in mind, a possible form for the rule is to require the same security level on each position:
intuitively this reflects that if we compute some value depending on the guard ¢;, then it should
have a level at least as high.

Exercise. Complete the definition of the evaluation rules following the above guidelines. You
should have 11 rules in total for the main judgement. [6 marks]

2.3 Proving the safety theorems

The safety theorems are straightforward modifications. Notice that the Progress theorem captures
our intention that evaluation proceeds at level [until we reach a value stamped with [.

Theorem 1 (Progress) If t : T|l] then either t is an l-labelled value, or there is a t' such that

t —1 tl.

Theorem 2 (Preservation) IfT' - ¢ : T[l] andt —; t' then T' & ¢’ : TY[l] too.

We need the usual lemmas to prove the safety theorems. In addition, to prove Progress we
require one auxiliary lemma given below. (The proof of this gives you more hints about the forms
of the evaluation rules!)

Lemma 3 (Raised level progress) Ift —; t' and | <1’ then there is a t" such thatt — t".

Proof. By induction on the derivation of ¢ —; ¢’. Consider the last case used:

Case E-LAB: then ¢t = v and ¢/ = v[l]. By the same rule, we have v —p v[l'].

Case E-SuB: then t = v[k] and ¢’ = o[l] for k¥ < [. Then by the same rule we have
v[k] —p v[l'] since k < I

Case E-FunBobpy, E-FUNARG: We have t —; t' by the same rule again because
we may increase [and still satisfy the premise.

Case others: the result follows for all other rules either immediately by raising the
target level in the same rule, or by applying the the induction hypothesis and then
using the rule again. O

Exercise. Complete the safety theorem proofs. You should write up at least some representative
cases (but preferably whole proofs). Variables and functions were suggested in the practical handout
because they are constructs of FOFL; you should also include some cases of values, because they
help understand the system, and also cases to test the new typing and evaluation rules in SFOFL.
Furthermore, you should state the Canonical Forms and Substitution lemmas in the form you need
them (proofs are not necessary but you should convince yourself they hold). [5 marks|

David Aspinall
Srd March 2005
2005/03/03 10:1}:41.

	Understanding security levels
	Designing the type system
	The evaluation relation (abstract machine)
	Defining the typing relation
	Proving the safety theorems

