
Topics in Natural Language Processing

Shay Cohen

Institute for Language, Cognition and Computation

University of Edinburgh

Lecture 6

Solving an NLP Problem

When modelling a new problem in NLP, need to address four issues:

Structure	
 Learning	
 Inference	
 Model	

Log-Linear Models

To define a probability model over X × Y, define a feature function
φ(x, y) and then define a log-linear model:

p(y | x) =
exp (w · φ(x, y))∑
y′ exp (w · φ(x, y′))

where w is a weight vector.

Also sometimes written as

p(y | x) =
exp (w · φ(x, y))

Z(x,w)

• Given a set of data (x1, y1), . . . , (xn, yn) we need to find w. How?
• What is the role of φ?

Role of φ

• We see x and y through the glasses of φ

• φ should choose parts of x and y that indicate each other.

For example:
POS tagging:
(x - word, y - POS tag, type-based POS tagging)

φ(x, y) is 1 if x starts with a capital letter and y is a Proper Noun and
0 otherwise.
Named entity recognition:
(x - word, y - type of named entity)

φ(x, y) is 1 if x ends with “son” and y is a Person and 0 otherwise.

Training Log-Linear Models

Define the log-likelihood function:

L(w | xi, yi, i ∈ [n]) =

n∑
i=1

log p(yi | xi,w)

Gradient descent and other optimisation algorithms are our main tool

Need to be able to calculate the gradient of the log-likelihood.

Maximising the log-likelihood

w∗ = arg maxw L(w|x1, y1, . . . , xn, yn)

Gradient of Log-Linear Model

L(w | xi, yi, i ∈ [n]) =
∑n

i=1 log p(yi | xi,w) =

=
1
n

n∑
i=1

log
(

exp(w · φ(xi, yi))

Z(xi,w)

)

=
1
n

n∑
i=1

w · φ(xi, yi)− log Z(xi,w)

call each term `i(w)

=
1
n

n∑
i=1

`i(w)

Gradient of a Single Summand

`i(w | xi, yi) = w · φ(xi, yi)− log
(∑

y′ exp (w · φ(x, y′))
)

∂`i

∂wj
= φj(xi, yi)−

∂ log Z(xi,w)

∂wj

∂Z(xi,w)

∂wj
(w) =

∑
y′

exp(w · φ(xi, y′))φj(xi, y′)

∂ log Z(xi,w)

∂wj
(w) =

1
Z(xi,w)

∂Z(xi,w)

∂wj

Gradient of average log-likelihood

∂L
∂wj

=

(
1
n

n∑
i=1

φj(xi, yi)

)
−
∑

i

∑
y

exp(
∑d

k=1 wkφk(xi, y))

Z(xi,w)
φj(xi, y)

1
n

n∑
i=1

φj(xi, yi) = Ep̃[φj(x, y)]

∑
i

∑
y

exp(
∑d

k=1 wkφk(x, y))

Z(xi,w)
φj(xi, y) = Epw [φj(x, y)]

Therefore, the gradient is the difference between empirical
expectations and expectations under the model

What are we trying to do with gradient descent? Essentially, find a
place where the gradient is zero. What does that mean?

Gradient of average log-likelihood

∂L
∂wj

=

(
1
n

n∑
i=1

φj(xi, yi)

)
−
∑

i

∑
y

exp(
∑d

k=1 wkφk(xi, y))

Z(xi,w)
φj(xi, y)

1
n

n∑
i=1

φj(xi, yi) = Ep̃[φj(x, y)]

∑
i

∑
y

exp(
∑d

k=1 wkφk(x, y))

Z(xi,w)
φj(xi, y) = Epw [φj(x, y)]

Therefore, the gradient is the difference between empirical
expectations and expectations under the model

What are we trying to do with gradient descent? Essentially, find a
place where the gradient is zero. What does that mean?

MaxEnt Modelling and Log-linear Models

Principle of maximum entropy: Keep the uncertainty about what
you didn’t observe as high as possible

Maximising the entropy of the model while keeping the feature
expectations according to the model identical to the feature
expectations according to the data

is equivalent to

Maximising the log-likelihood of a log-linear model with the same
feature functions

MaxEnt Modelling and Log-linear Models

Principle of maximum entropy: Keep the uncertainty about what
you didn’t observe as high as possible

Maximising the entropy of the model while keeping the feature
expectations according to the model identical to the feature
expectations according to the data

is equivalent to

Maximising the log-likelihood of a log-linear model with the same
feature functions

Regularisation

To avoid overfitting, add a term that ensures that weights do not
become too large in absolute value:

L(w | xi, yi, i ∈ [n]) =

n∑
i=1

log p(yi | xi,w)− R(w)

Examples for R(w):

• R(w) = ||w||22 =
∑

i w2
i

• R(w) = ||w||1 =
∑

i |wi|

Decoding with Log-Linear Models

Given an x, want to find the most likely y given an x:

y∗ = arg maxy p(y | x,w) =

= arg max y
exp(w · φ(x, y))

Z(x,w)

(Z(x,w) is constant with respect to y and therefore:)

= arg max y exp(w · φ(x, y))

(and now we can just take the log)

= arg max yw · φ(x, y)

Linear Score Models

A non-probabilistic model that only considers the score

score(x, y,w) = w · φ(x, y)

Decoding remains the same:

y∗ = arg max
y

w · φ(x, y)

Can we train the model directly with this score?

Yes! For example, with the Perceptron.

Linear Score Models

A non-probabilistic model that only considers the score

score(x, y,w) = w · φ(x, y)

Decoding remains the same:

y∗ = arg max
y

w · φ(x, y)

Can we train the model directly with this score?
Yes! For example, with the Perceptron.

Training Linear Score Models

The Perceptron algorithm:

• Initialise w to 0.
• For T iterations

• For each labelled pair (x, ygold) in the data
I ypredict = arg maxy w · φ(x, y)
I w← w + φ(x, ygold)− φ(x, ypredict)

Intuition Behind Perceptron

Main update rule in step t:

w← w + φ(xt, ygold)− φ(x, ypredict)

• Features that fire in the correct structure positively predict the
structure, and if they don’t fire in the prediction, we need to
increase their weight to make them more “important” (increase
the score when they fire)

• If we don’t make a mistake, there won’t be an update!

Avoiding Overfitting with the Perceptron

The averaged Perceptron: maintain a waverage which is the average of
all weight vectors w after each update (whether it happened or not).

Return waverage as the final weight vector

Each w is most adapted to the last example it has seen. Averaging
treats each w as a separate classifier, and then takes the average of
all scores from all of these classifiers

Two Interpretations of the Perceptron

• The Mistake Bound Model

• Optimising an objective function

Stochastic Gradient Descent

The Perceptron algorithm can be viewed as a stochastic subgradient
descent algorithm.

• Stochastic: instead of making an update to the full objective
function, summing over all examples, we make an update for an
example at a time

L(w) =

n∑
i=1

`i(w)

Update at each step with the gradient
∂`i

∂w
.

• How is the Perceptron related to SSGD?

Perceptron as Objective Maximisation

We usually think in terms of optimising an objective function (like
with log-linear models). Does the Perceptron optimise any function
for a training set (x1, y1), . . . , (xn, yn)?
Consider

P(w, xi, i ∈ [n]) = arg min
w
λ||w||22 +

1
n

∑
i

max
y′
{0,
(
φ(xi, y′)− φ(xi, yi)

)
·w}

• Maximising
(
φ(xi, y′)− φ(xi, ygold)

)
· w gives the y′ that is closest

to ygold in its score.
• Minimising the whole objective function tries to minimise this

score difference
• The ||w||22 term is for regularisation

Subgradient

To optimise this function P we can calculate its “subgradient”

P(w, xi, i ∈ [n]) = arg min
w
λ||w||22 +

1
n

∑
i

max
y′
{0,
(
φ(xi, y′)− φ(xi, yi)

)
·w}

This is a generalisation of the notion of gradient (because the max
function is not differentiable according to standard gradient
calculations), and it gives the update of the Perceptron with λ = 2:
w← w + φ(x, ygold)− φ(x, ypredict)

Note that we are doing “stochastic optimisation” – at each step
updating the weights with a single example

Support Vector Machines

Similar to the Perceptron, only with a slightly different objective
function:

arg min
w
λ||w||22 +

1
n

∑
i

max
y′
{0,∆(yi, y′) +

(
φ(xi, y′)− φ(xi, yi)

)
· w}

∆(yi, y′) is a loss function that tells how far yi is from y (for example,
accuracy of labels in a sequence)

Idea: We take into account not just the linear score, but also how
well y′ is according to some evaluation metric

Same update as the Perceptron, only we need to find ypredict such
that

ypredict = arg max
y′

∆(yi, y′) + φ(xi, yi)− φ(xi, y′)

Summary

• Different types of algorithms for linear model learning

• We learned about: log-linear models, linear models with the
Perceptron and linear models with Support Vector Machines

• There is an active area of research that adds nuances to these
ideas for better optimisation and other learning objectives

