
Topics in Natural Language Processing

Shay Cohen

Institute for Language, Cognition and Computation

University of Edinburgh

Lecture 5



Solving an NLP Problem

When modelling a new problem in NLP, need to address four issues:

Structure	   Learning	  Inference	  Model	  



Inference

A process in which one has to take a model and an input and predict
or calculate some quantity in the output space

Most commonly:

y = arg max
x

p(y | x, θ)

or

y = arg max
x

score(x, y)



Types of Inference Algorithms

• Search algorithms

• Dynamic programming

• Sampling algorithms

• Integer linear programming



Types of Inference Algorithms

• Search algorithms

• Dynamic programming

• Sampling algorithms

• Integer linear programming



Search Algorithms

A traditional AI approach to find a solution

There is a “search space,” each element is a node in the graph

There is a “cost” associated with each node

There are edges between these nodes according to simple
operators that change one node into another

There is a “goal” node which is the solution we are looking for (with
the smallest cost)

There is a strategy to explore the graph and find the goal node



Example Strategy

Breadth-first search:

Best-first search (BFS):
Visit the nodes in order of their value.

Often coupled with “beam” search
Keep only partial set of nodes open (according to their value)



Another Example: A? Search

Exploring the graph by increasing cost. Each step adds to the cost.

Develop paths in the graph using a heuristic of the cost left to reach
the goal.

If h(v) is the estimated cost to reach the goal from node v and f (v) is
the cost associated with node v, then explore the node with
minimum minv f (v) + h(v)

If h(v) never overestimates the cost (“h is admissible”) the first time
the algorithm finds a goal, that goal is the correct one.



Dynamic Programming Algorithms

• Solve a “bigger” problem by breaking it into “smaller” parts

• The smaller parts are now the bigger problems – work
recursively

• Examples: Viterbi algorithm, parsing algorithms such as CKY



Inside and CKY

What is the connection between the inside algorithm and CKY?

CKY:
α(A, i, j) = max

i≤k≤j−1
max

A→B C
p(A→ B C|A)α(B, i, k)α(C, k + 1, j)

Inside:

α(A, i, j) =

j−1∑
k=i

∑
A→B C

p(A→ B C|A)α(B, i, k)α(C, k + 1, j)

The inside algorithm computes the total probability of a string –
summing out all derivations instead of maximising over them



Inside and CKY

What is the connection between the inside algorithm and CKY?

CKY:
α(A, i, j) = max

i≤k≤j−1
max

A→B C
p(A→ B C|A)α(B, i, k)α(C, k + 1, j)

Inside:

α(A, i, j) =

j−1∑
k=i

∑
A→B C

p(A→ B C|A)α(B, i, k)α(C, k + 1, j)

The inside algorithm computes the total probability of a string –
summing out all derivations instead of maximising over them



Semirings

What is a semiring?

• A set R

• Two operations: ⊕ and ⊗

• Identity element 1 for ⊗

• Identity element 0 for ⊕

• (... and a few more important properties)



CKY and Semirings

CKY:
α(A, i, j) = max

i≤k≤j−1
max

A→B C
p(A→ B C|A)α(B, i, k)α(C, k + 1, j)

What is the semiring?

⊕

a⊕ b = max{a, b}

⊗

a⊗ b = a× b

1 1
0 0



Inside Algorithm and Semirings

CKY:
α(A, i, j) =

∑
i≤k≤j−1

∑
A→B C

p(A→ B C|A)α(B, i, k)α(C, k + 1, j)

What is the semiring?
⊕

a⊕ b = a + b

⊗

a⊗ b = a× b

1 1
0 0



Log-Domain Trick and Semirings

CKY:
α(A, i, j) = max

i≤k≤j−1
max

A→B C
log p(A→ B C|A) + α(B, i, k) + α(C, k + 1, j)

What is the semiring?

a⊕ b = max{a, b}

⊗

a⊗ b = a + b

1
log 1 = 0

0
log 0 = −∞



Examples of Semirings

Name Domain ⊕ ⊗ 0 1 Description
Viterbi R+ max × 0 1 Find most likely

derivation
Inside R+ + × 0 1 Sum over derivations
Count N + × 0 1 Count the number of

derivations
Arctic R ∪ { −∞} max + −∞ 0 Find most likely

derivation in log-
domain

Tropical R+ ∪ {∞} min + ∞ 0 Same as arctic
Boolean {t, f} ∨ ∧ f t Recognition
String Σ∗ ∪ {s∞} ∧ ◦ s∞ ε Outputting strings



Parsing as Weighted Logic Programming

constit(a, i, j)⊕ = constit(b, i, k)⊗ constit(c, k + 1, j)⊗ rule(a→ b c)

constit(a, i, i)⊕ = rule(a→ w)

Goal: constit(S, 0, n)



Weighted Logic Programmes

A succinct useful representation for dynamic programming
algorithms

It represents inference algorithms in a generic way

Does not commit to a specific “execution model” – but dynamic
programming is often used



Example of a Weighted Logic Programme

We are given a sequence w1, . . . ,wn of some symbols.

prob(b, i)⊕ = prob(a, i− 1)⊗ transition(a→ b)⊗ emission(b,wi)

prob(a, 1)⊕ = start state(b)⊗ emission(a,w1)

Hidden Markov models and the forward algorithm:

• emission are the emission probabilities

• transition are the transition probabilities

• start state are the initial probabilities

• prob(b, i) gives the probability p(w1, . . . ,wi, Si = b)



Example of a Weighted Logic Programme

We are given a sequence w1, . . . ,wn of some symbols.

prob(b, i)⊕ = prob(a, i− 1)⊗ transition(a→ b)⊗ emission(b,wi)

prob(a, 1)⊕ = start state(b)⊗ emission(a,w1)

Hidden Markov models and the forward algorithm:

• emission are the emission probabilities

• transition are the transition probabilities

• start state are the initial probabilities

• prob(b, i) gives the probability p(w1, . . . ,wi, Si = b)



Solving Weighted Logic Programmes

• Memoisation and dynamic programming

• Agenda algorithms. Roughly:

• Keep a queue (“agenda”) of unprocessed items and a chart of
processed items

• Dequeue an item x and create or update all items by using
information from the chart together with x. Put all the new items
in the queue

• Depending on the order by which we dequeue from the agenda,
we might process items several times

• Examples of agenda priority values: the value of an item, the
value of an item with A? heuristic



Reminder about Bayesian Inference

Bayesian inference:

p(θ | x) =
p(x | θ)p(θ)

p(x)

Bayesian inference with latent variables:

p(z, θ | x) =
p(θ)p(x, z | θ)

p(x)



Sampling

Instead of finding the most likely structure, we randomly sample a
structure from the underlying distribution

If the distribution is peaked, then it will be roughly the same as
finding the highest scoring structure

One can also use “annealing” with sampling to find the highest
scoring structure



Sampling Algorithms

Goal: sample from a target distribution p(u)

For example, p(u) could be the posterior from a Bayesian model, in
which case u = (z, θ)

Most common sampling algorithms: Markov Chain Monte Carlo
methods

Ideal for cases in which we cannot compute the “normalisation”
constant such as with Bayesian models



Markov Chain Monte Carlo

The big picture:

• Our sample space becomes a space of “states”

• There is some strategy to probabilistically move between states

• The strategy ensures that the transition between states will at
some point converge to the target distribution we are interested
in

• The samples do not have to be independent, and usually are
not!

• Very useful for cases in which we can calculate the target
distribution up to its normalisation constant (such as with
Bayesian inference)



Example of MCMC: Gibbs Sampling

Break a “state” into several parts, for example, two parts: z and θ

Algorithm:

Let θ∗ and z0 be some random values.
Repeat until convergence

• Sample z∗ from p(z | θ∗)
• Sample θ∗ from p(θ | z0)

• Set z0 to be z∗

Collect the samples θ∗ and z∗

We can also break z into further parts and use “operators” to move
between states, making small changes to a bigger structure.

Strong relationship to search algorithms



More General: Metropolis-Hastings Algorithm

We are interested in sampling from p(u), but can only sample from a
proposal distribution q(u′|u)

Algorithm:

Initialise u with some value from Ω
Repeat until convergence

• Sample u′ from q(u′|u)

• Calculate an acceptance ratio

α = min
{

1,
p(u′)q(u|u′)
p(u)q(u′|u)

}
• Set u← u′ with probability α

Collect the samples u all through



Integer Linear Programming

Formulate the problem of inference as maximising a linear objective
with constraints

The variables in the objective are “pieces” of the structure

Useful technique to add “global” constraints to the inference
algorithm

Use off-the-shelf tools to find a solution, such as CPLEX or Gurobi



Summary

• Inference in our context refers to finding an output for a given
input (decoding)

• ... or other type of information about the output

• Most common ways to do that in NLP: search algorithms,
dynamic programming, sampling algorithms, integer linear
programming


