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Last class

Maximum likelihood estimation:

L(θ,w1, · · · ,wn) =
1
n

n∑
i=1

log p(wi | θ)

θ∗MLE = arg max
θ

L(θ,w1, · · · ,wn)



A guessing game

I choose a random number between 1 and 20. You need to guess it,
and each time you make a guess I tell you whether your guess is
higher or lower than my number. What is your strategy to guess the
number as quickly as possible?

Binary search. Number of steps: log2 n = − log2
1
n

.

I choose a random number x between 1 and 20 from a distribution
p(x). You know p and need to guess the number. What is your
strategy?
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What does log-probability mean?

Let p be a probability distribution over Ω. What is − log2 p(x)?

Number of bits it takes to encode an optimal code for Ω when the
true distribution is p(x)

Entropy:

H(p) = −
∑

x

p(x) log2 p(x) = Ep[|code(x)|]

The code is a bit-by-bit description of whether we take the decision
“lower” or “higher” in the game



Another view of maximum likelihood estimation

What is the “empirical distribution?”
p̃(w) be a probability distribution over the domain of datapoints such
that p̃(w) is the fraction of the n datapoints such that they are
identical to w.

p̃(w) =
count(w; w(1), . . . ,w(n))

n

Rewriting the objective function L(θ,w1, . . . ,wn)

L(θ,w1, . . . ,wn) =
1
n

n∑
i=1

log p(wi | θ)

=
∑
w∈Ω

p̃(w) log p(w | θ)

This is the cross entropy between p̃ and p

θ∗ = arg min
θ
−
∑

w

p̃(w) log p(w | θ)



Cross-entropy

What is the definition of cross-entropy?

CE(p, q) = −
∑

x

p(x) log q(x) = Ep[− log q(x)]

• Cross entropy is not symmetric, as such it is not “distance”, but
it does tell whether p and q are close to each other

• For any given p, it is minimized when q = p

• It tells the expected number of bits we would use if we “encode”
using q when p is the true distribution
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Likelihood maximisation

By doing maximum likelihood maximisation we:

• Choose the parameters that make the data most probable,

or, from an information-theoretic perspective:

• Choose the parameters that make the encoding of the data
most succinct (bit-wise),

in other words, we

• Minimize the cross-entropy between the empirical distribution
and the model we choose.



Types of Models

It is often the case that we discuss a model p(x | θ)

Really, in NLP, you are interested in predicting some y(x)

Therefore, you need p(x, y | θ). Estimation is the same when both x
and y are in the dataset. Later we will learn about incomplete data

In some cases you model also p(y | x, θ) (e.g. neural networks,
log-linear models).

This gives the generative vs. discriminative model distinction



Types of Objectives

We showed an example of deriving the log-likelihood solution for a
simple model

One can have more complex objective functions, and the principle
would be the same

You just might not have a closed-form solution (e.g. with deep
learning, log-linear models, etc.)

You need to apply an optimisation algorithm – more on that later



A bit of history

One of the earliest experiments with statistical analysis of language
– measuring entropy of English

2-3 bits are required for English



Approach 2: the Bayesian approach

• History: 1700s. Seminal ideas due to Thomas Bayes and
Pierre-Simon Laplace

• A lot has changed since then...



Use of Bayesian Learning in NLP

Very often used in the context of unsupervised learning. Why?

• Hard to beat discriminative methods in the supervised case
(log-linear models, deep learning, etc.)

• Flexible framework for latent variables

• Priors play much more important role in the unsupervised
setting

See more discussion in the reading material



Bayes’ rule

What is Bayes’ rule?
If you have two random variables X and Y then

p(X = x | Y = y) =
p(Y = y | X = x)p(X = x)

p(Y = y)

(show that using the chain rule)

Reminder: What does Statistics do? Invert the relationship between
model and data.

Bayes’ rule does the same with random variables.

What if our model parameters were one random variable and our
data were another random variable?
Define our “X” to be θ
Define our “Y” to be the data
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Prior beliefs about models

We have a parameter space Θ and prior beliefs p(θ).

Our θ is now a random variable.

From the chain rule: p(w, θ) = p(θ)p(w|θ)

p(θ | w) =
p(w | θ)p(θ)

p(w)

• p(w | θ) - the likelihood
• p(θ) - the prior
• p(w) - the evidence



Posterior inference

p(θ | w) =
p(w | θ)p(θ)

p(w)
basic posterior inference

p(w) =

=

∫
θ

p(w | θ)p(θ)dθ

because ∫
θ

p(θ | w)dθ = 1

and therefore ∫
θ

p(w | θ)p(θ)/p(w)dθ = 1

and therefore p(w) =
∫
θ p(w | θ)p(θ)dθ



Priors

Our prior beliefs are considered in inference. There is no “correct”
prior.

Is that a good or bad thing?

• Frequentists: probability is the frequency of an event

• Bayesians: probability denotes the state of our knowledge
about an event

• Subjectivists: probability is a personal belief

• Objectivists: minimise human’s influence on decision making

• In practice: NLP use of Bayesian theory is largely driven by
computation
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Back to pre-historic languages

Language with two words: “argh” and “blah”

Our Ω is {argh, blah}.

Our Θ is [0, 1].

Define I(w) = 1 if w = argh and 0 if w = blah.

Then, p(w|θ) = θI(w)(1− θ)(1−I(w)).



Uniform prior, 0.7 prob. for argh
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Posterior with 10 datapoints, truth is 0.7 prob.
for argh
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Posterior with 100 datapoints, truth is 0.7 prob.
for argh

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

prob. of heads

de
ns
ity



Posterior with 1000 datapoints, truth is 0.7 prob.
for argh
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Non-uniform prior, truth is 0.7 prob. for argh
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Priors for binary outcomes

p(θ) ∝ θα(1− θ)β p(w|θ) = θI(w)(1− θ)(1−I(w))

What is the posterior?
D = {w1, . . . ,wn}

p(θ | w1, . . . ,wn) =
p(w1, . . . ,wn | θ)p(θ)

p(w1, . . . ,wn)

=

∏n
i=1 p(wi | θ)p(θ)

p(w1, . . . ,wn)

∝
n∏

i=1

θI(wi)(1− θ)1−I(wi) × θα(1− θ)β

p(θ) is also called the Beta distribution Beta(α, β)



=
θ
∑

I(wi) × (1− θ)n−
∑

I(wi)

p(w1, . . . ,wn)
× θα(1− θ)β

=
θα+

∑
I(wi) × (1− θ)β+n−

∑
I(wi)

p(w1, . . . ,wn)

Note that p(w1, . . . ,wn) does not depend on θ, so we get that the
“posterior” is:

Beta(

n∑
i=1

I(wi) + α, n−
n∑

i=1

I(wi) + β)



Maximum a posteriori estimate (MAP)

“Bayesian estimation”: find θ∗ that maximises the posterior:

θ∗MAP = arg max
θ

p(θ | w1, . . . ,wn)

= arg max
θ
θa+α(1− θ)b+β

Same process as with MLE (derivative and equating to 0):

θ∗MAP =
a + α

a + b + α+ β
=

a + α

n + α+ β

where a =
∑

i I(wi) and b = n−
∑

i I(wi)



MAP and posteriors

In general,

• Priors are especially important when the amount of data is small

• As there is more data, the prior becomes less influential on the
posterior

• Under some mild conditions, the posterior is a distribution
concentrated around the MLE



Conjugacy of prior and likelihood

p(θ) ∝ θα(1− θ)β p(w|θ) = θI(w)(1− θ)(1−I(w))

Prior is “hyperparametrised”. What is the posterior?

p(θ | w) ∝ θa+α(1− θ)b+β

p(θ) ∼ Beta(α, β)⇒ p(θ | w1, . . . ,wn) ∼ Beta(a + α, b + β)



Conjugacy of prior to a likelihood

We are given a prior family and a likelihood family.

Each probability distribution in the likelihood family is parametrised
by a parameter in the prior family

We say that they are conjugate to each other if the posterior of a
likelihood for a prior in the family stays a member of the prior family

“It all stays in the family...”



Conjugacy – always useful?

Trivial non-useful example of conjugacy

Prior family is:

P = {All distributions over Θ}

Posterior is always in P. As such, P is conjugate to any likelihood.
Useful?



Conjugacy – always useful?

Another trivial non-useful example of conjugacy

Prior family is:

P = {p(θ) | p(θ) places all mass on a single point θ0}

Posterior is always in P. As such, P is conjugate to any likelihood.
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Conjugacy: summary

Conjugacy is useful when:

• The prior is not too poor
• It is easy to calculate the posterior hyperparameters

In many cases, conjugate priors lead to treating the
hyperparameters from the prior as “pseudo-observations”

(Such is the case with additive smoothing)



Minimum Description Length and MAP

What is − log2 p(θ|w1, . . . ,wn) ?
# of bits that is required to encode θ when w1, . . . ,wn is known.

What is − log2 p(θ)?
# bits that is required to encode θ apriori
What is − log2 p(w1, . . . ,wn|θ)?
# bits that is required to encode the data if we think θ is “correct”
MAP: θ∗ = arg minθ − log2 p(θ)− log2 p(w1, . . . ,wn|θ)

Encoding θ∗ requires separately:

• Encoding the hypothesis according to the prior

• Encoding the data according to the hypothesis

That’s the “minimum description length” criterion
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Learning from Incomplete Data

Just as a side note:

• Bayesian analysis in NLP is especially uesful for learning from
incomplete data

• It presents a flexible framework for introducting latent variables
into a model

• Posterior inference becomes more complex



Summary

Bayesian analysis:

• Only uses Bayes’ rule to do inference

• Posterior is a distribution over parameters

• Can summarise the posterior, e.g. MAP, to get a point estimate

• Need to be careful about choice of prior

• Especially important with small amounts of data

• MAP has a connection to minimum description length (MDL)



Discussion

Bayesian analysis or frequentist analysis?


