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Abstract
A survey of the history of the learning of morphological rules is

presented. Further investigation is made into the current state of
NLP techniques with regards to supervised and unsupervised learning
morphology. An analysis of the outstanding problem of “German
linking elements” is presented and reviewed. Finally, a proposal is
made with the goal of applying current morphological analysis and
NLP strategies to the problem of linking elements.

1 Introduction

The study of morphology has traditionally concerned itself with the exam-
ination of the smallest individual unit of linguistic meaning, the morpheme.
Within the realm of natural language processing, analysis of morphology is
largely concerned with the correct parsing of words into stems and affixes
i.e. stems and morphemes. In morphologically simple languages, such as
English, the majority of analysis has favored a syntagmatic or concatenative
approach; morphemes are added one after another onto a stem in order to
arrive at a whole word. Furthermore, in a strict syntagmatic approach, the
view is usually taken that a morpheme refers to a bi-unique form-meaning
mapping i.e. one form of a morpheme maps to one and only one meaning.
Unfortunately, for more complex morphological problems, this approach has
proved lacking in explanatory power. One such instance is the case of Fu-
genelemente or Linking Elements in German.

In the context of compound noun formation, linking elements are the
linguistic “glue” that sometimes appears between two compound stems. For
example, Zeitungsindustrie or newspaper industry is composed of three parts,
Zeitung “newspaper,” industrie “industry,” and -s-. This “-s-” is an exam-
ple of a linking element. In German, linguists commonly list nine linking
elements:-e, -er, -s, -es, -n, -en, -ns, -ens, and -∅. The last one −∅ is
referred to as a zero morpheme. Other languages possess linking elements;
for example, English possesses unproductive linking elements as seen in the
words huntsman, marksman, and spokesman; in each instance, -s- is the link-
ing element. However, the particular focus of this paper is on German, and
its highly productive linking elements; notably, the distribution of German
linking elements remains an open problem in linguistics. Simply put, there
has been no convincing morphological analysis put forward to explain their
presence or purpose.
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The motivation of this essay is to provide a groundwork for future analysis
of German linking elements within the context of natural language process-
ing and current morphological theory. To this end, a literature review of
several key works in the field of morphological NLP is presented. Particu-
lar attention is given to papers concerned with German or compound nouns
in general. Prior drafts of this work reviewed Brown (2002)[?] and Kudo
(2004).[?] However, the research they presented, while valuable to the field,
had little bearing to the task at hand, and are thus excluded. For example,
Kudo’s application of conditional random fields in order to disambiguate
word boundaries is not applicable on the whole to German, as whitespace
serves as the word boundary marker when processing German text. Addition-
ally, Hammarström (2011)[?] is referenced, but only in relation to his review
of other works; his article is itself a literature review of over 200 prominent
papers on NLP and morphology, and is thus useful primarily for its attempt
to summarize the field’s history, rather than any new contributions.

The final half of the paper reviews Neef (2015),[?] an article currently
undergoing peer review. It provides a novel linguistic analysis of linking el-
ements in light of previous failed efforts. The plausibility of this hypothesis
is examined in light of recent developments in morphology e.g. Ackerman
(2009).[?] Furthermore, proposals for future implementation and analysis of
Neef’s hypothesis are put forward. One approach considers linguistic analysis
in terms of low conditional entropy between German noun forms, based on
Ackerman (2013).[?] Additionally, before any linguistically motivated analy-
sis can occur, a corpus of suitable candidates must be collected and processed.
A potential approach as to how to effect this is proposed, largely based upon
the work of Goldsmith and Reutter (1998).[?] Finally, the practical bene-
fits of such an investigation are considered. Within NLP, compound nouns
have proven particularly troubling in machine translation. Morphologically
rich languages with extensive compounding have proven difficult to translate
adequately due to data sparsity issues. Effective, linguistically motivated,
analysis and splitting of compounds is a potentially effective method to mit-
igate data sparsity and thus improve BLEU scores. The hope is that deep
linguistic analysis can lead to practical improvements in existing systems, or

2



at least not worsen them; this would be encouraging, since, at times, lin-
guistics and natural language processing have been viewed as in competition
with each other:

Every time I fire a linguist, my performance goes up.

—Fred Jelinek

2 Literature Review

2.1 Wothke (1986)

As a condensation of his 1985 PhD thesis “Maschinelle Erlernung und
Simulation morphologischer Ableitungsregeln,” Wothke’s 1986 paper presents
a program he developed during his research: PRISM. This program makes
use of semi-supervised learning in order to learn rules for inflectional and
derivational morphology. Though not mentioned by Wothke, Hammarström
(2011) makes note that a primary motivation in developing PRISM was to
minimize the requirements on RAM due to limited computing resources at
the time; large lexicons were too big to fit into working memory.1 However,
this concern over limited working memory is now largely irrelevant.

To accomplish this task, PRISM is fed annotated training data. For
example, if the goal is to learn pluralization rules for English, the data takes
the form of singular-plural pairs e.g. field-fields, anchovy-anchovies, fox-
foxes. PRISM also contains a set of abstract symbolic rules, of the form:

X → Y/Z(1), Z(2), ..., Z(n) #

This rule form is to be read as, X goes to Y when it is word final and is
preceded by some context Z. The semi-supervised part of PRISM lies in that
given the annotated training data, it can adapt the symbolic rules to the
contexts that it learns from the training data. Furthermore, it automat-
ically learns the proper ordering for the rules. This method is language-
independent; Wothke describes having trained it to learn how to inflect male

1 Hammarström, 2011 pg.315
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nouns to produce female nouns in French, and how to derive nominal actions
from verbs in German.2 After training, the system was run on test data,
and correctly produced the target form i.e. female nouns or nominal actions
with 100% accuracy. Notably, and as a precursor to many later NLP systems
utilizing machine learning, the author notes that performance improves as
the size of the training data set increases.3 Most NLP systems today based
on Bayesian statistical methods exploit the same insight.

Given the success of Wothke’s approach, it is worth noting its drawbacks.
Wothke does not provide a description of the learning algorithm.4 However,
Goldsmith notes that Wothke’s algorithms were usually complex, to the point
that it was prohibitively time consuming to implement them to serve as a
baseline comparison for other systems.5 The time consuming implemen-
tation of the algorithms mean that although Wothke’s system is language
independent in theory, it may be practically difficult. Doing so requires hand
annotated training data for every morphological rule in every language that
one wishes to analyze. Furthermore, Wothke notes that PRISM cannot deal
with infixes.6 Though this form of affixation may be less common in Eu-
ropean languages, it is relatively common amongst other languages of the
world. Thus, though Wothke claims to have a language independent system,
it is only within the domain of a relatively small handful of languages.

Regarding the applicability of this work to the problem of German linking
elements, their is likely to be no influence. Besides being prohibitively com-
plex to implement (supposedly), German linking elements are in the middle
of compound nouns i.e. they are infixed, even if they do not function as
infixes. Thus, the symbolic rules that PRISM uses are blind to this morpho-
logical variation and would have to be completely reformulated in order to
provide an analysis of compound nouns. Rather, Wothke’s early work pro-
vides an insight into some of the earliest attempts at semi-supervised learning
of natural language morphology.7

2 Wothke, 1985 pg.292
3 Wothke, 1985 pg.290
4 A description is probably provided in his PhD thesis. However, it is unavailable as

an e-resource.
5 Goldsmith, 2001 pg.157
6 Wothke, 1985 pg.292
7 Earlier work in the 1960s by Soviet linguist Nikolai Andreev can be seen as perhaps

the first efforts at applying computational methods to morphology. However, his
influence on the present state of research is minimal to say the least.
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2.2 Goldsmith and Reutter (1998)

Though Goldsmith’s seminal 2001 paper on unsupervised learning of mor-
phology will be discussed in length further on, a more obscure paper produced
while he was a researcher at Microsoft has direct relevance to our task of ana-
lyzing German compounds. Goldsmith and Reutter’s “Automatic Collection
and Analysis of German Compounds” presents efforts to automatically col-
lect and split German compound nouns. Specifically, and of primary interest
to the task at hand, their analysis focused on the distribution of the linking
element amongst each word in the lexicon.

The author’s collection of compounds begins with the observation that
in German writing, nouns are always capitalized. Thus, their search space is
limited to the approximately 300,000 words in Microsoft’s Encarta that begin
with capital letters. Though not described, this is probably accomplished
via a regular expression search. From this collection, 8,426 noun stems were
identified. Further processing was then done to filter the candidates. The
next step was to identify productive German suffixes, 74 being identified.8.
If their algorithm matched two words composed of an identical stem with
two different suffixes, it was accepted as a legitimate stem and stored. This
included the possibility of no suffix i.e. a stem that appears once with an
suffix and once with no suffix is stored.

The authors, now having collected a list of stems, return to the orig-
inal corpus to search for possible parses of compounds. This procedure
is relatively straightforward as a search problem. With a list of stems,
74 suffixes, and 9 linking elements determined beforehand, the procedure
is a matter of pattern matching i.e. find all items that match the pat-
tern stem+linking element+stem+suffix. The search returned “5522 com-
pounds, based on 3866 distinct First Element stems.9” These results are
stored in the form:

(Left Stem,Linking Element{Examplar1, Exemplar2, ..., Exemplarn})

In this notation, the authors use “Exemplar” to refer to the right element
of a compound, which has the form stem+suffix. No comment is made as
to the data structures for storing the items; however, the bracketing above,
which mirrors the authors’ provides some guidance. Presumably, each item

8 Goldsmith (1998) These suffixes include the common -en, -e, -er, and -ung.
9 Goldsmith (1998)
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is composed of a tuple, each tuple containing a left stem followed by a dic-
tionary; this dictionary would have a single linking element as a key, and
a list of exemplars as values e.g. (a,{b:[x,y,z]}). These individual entries
could then be stored in a larger data structure such as a list or dictionary,
depending upon other experimental considerations.

Another round of filtering is conducted on the records in order to reduce
potentially ambiguous nouns. At this point, the data is restructured, such
that in each entry, the left stem is paired with the linking element it appeared
with to form a unit the authors call a “candidate.” Thus, each compound
noun is of the form Candidate+Exemplar, and the corresponding data is
stored in the form (candidate, [exemplar1, exemplar2, ..., exemplarn]) i.e. a
two element tuple with the second being a list. The structure is not described
as such, but the formatting is fairly transparent.

The first step in this round of filtering removes nouns of the form Abbil-
dung, since the first element, Ab is not a noun. Problematically, how such
stems entered into the potential list of candidates is not addressed at any
step of the filtering. Presumably, this resulted from errors made during the
first pass through the corpus that identified the 8,426 noun stems. Some
of these candidate stems were not nouns themselves. Again, without fur-
ther insight from the authors, we are left to conjecture. Second, left stems
with multiple parts of speech are excluded, gut, which can mean “good” or
“property” is used as an example. Third, candidates that have ambiguous
divisions between the stem and linking element are removed; for instance
Name can be parsed as Name+∅ or Nam+e. Fourth, candidates wherein
the final character of the left stem and the first character of the linking ele-
ment are identical are excluded e.g. industrie+er. This step is essential for
avoiding spurious parses such as industrie+er+zeugnis+se, which is prop-
erly parsed as industrie+∅+erzeugnis+se. Fifth, unlexicalized exemplars
i.e. those not seen individually, are excluded. This is a potentially rare case,
and the authors use the exemplar bella+∅ as an example, which only occurs
in conjunction with the candidate Ara “parrot+∅.” Sixth, exemplars with
ambiguous stem and suffix divisions are excluded. The most salient example
proffered being kammer, which can be analyzed as kamm+er “comb+er” or
kammer+∅ “chamber.” Seventh, exemplars which generate ambiguity in the
division between the linking element and the exemplar stem are excluded,
with Abfallerfassung having the possible parses of Abfall+er+fassung+∅ or
Abfall+∅+erfassung+∅. Finally, cases wherein the candidate plus exem-
plar i.e. the whole compound, are lexicalized, are removed. For instance
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the candidate plus exemplar pair Ara+∅+rat+∅ is lexicalized as Ararat (as
in the Turkish mountain). This compound pair is removed. The termi-
nology used in describing this final step is challenging. Though the exam-
ple provided is obviously a correct example of a spruorious compound, the
plain words of the report suggest that should one have the compound pair
Zeitung+s+industrie+∅ “newspaper industry,” and actually encounter it in
the corpus i.e. find Zeitungsindustrie, then the hypothesized candidate plus
exemplar pair is excluded. This interpretation is obviously wrong, however,
the report does not elaborate on the step in order to remove this ambiguity.10

Only 1341 nouns survive the stringent filtering process. However, with
this new list, it is possible to calculate distributions for the linking elements.
This process breaks down to simply calculating frequencies. Let T be the
total number of exemplars associated with a given left stem, and L be the
total number of exemplars associated with the corresponding candidate (left
stem+linking element). The frequency of a given linking element for a left
stem noun LF is:

LF = L
T

No table of results is presented by Goldsmith and Reutter, however, as an
example of the above formula, they give the linking element distribution for
the noun Staat. The distribution, with two associated linking elements, is
−en = 0.11 and −s = 0.89.

The primary contribution of Goldsmith and Reutter’s work is the scal-
ability of their system. Though they only made use of a relatively small
corpus of 300,000 words from Encarta, the automation of their method at
all steps results in no theoretical limit on the source corpus size.11 This
automation provides great utility for potential future work. However, the
author’s are careless when using the phrase “automatic analysis.” It is
certainly true that their system accurately parses German compounds into

10 To view this problem for oneself, see Step 8 in Goldsmith (1998).
11 Goldsmith and Reutter properly conclude that the limit is rather a practical one.

Computational resources are the primary limiting factor in this method of collection
and analysis. For the size of corpora in question e.g. EUROPARL, this issue is even
more trivial now than it was in 1998.
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stem-linking element-stem-suffix form. Hammarström (2011) catego-
rizes this segmentation as one of the lowest levels of analysis.12 Tradition-
ally, linguistic analysis is viewed as connecting empirical observations to an
overarching justification13 i.e. an empirically motivated theory is created,
informed by the results of the segmentation and further analyses. In this
regard, Goldsmith and Reutter do very little; their linguistic motivation is
even, arguably, in error. Furthermore, clues as to appropriate data structures
for storing hypothesized compound nouns benefit future work. The nested
format chosen is indeed logical, but also bears traces of influence from Gold-
smith’s later work on Minimum Description Length, wherein morphemes are
handled in a similar series of structures.

As an example, the authors dismiss the existence of “stem-dropping” such
as when Schule is first reduced to Schul- before forming Schulkind. Rather,
they argue that Schul is the stem, since it illustrates the relation between
Schule and schulen.14 This analysis is unconvincing. As a counterexample,
it is improbable that a native speaker of English, when looking at the words
happy, happily, happier, happiness, and happiest, would deduce the stem
form to be happ-. Such an analysis is analogous to Goldsmith and Reutter’s
one of German compounds. Averred, such an approach does make sense from
a text processing standpoint in that it requires less of it, which is certainly a
valid motivation; however, this is not synonymous with linguistic motivation,
and possibly in conflict with it.

2.3 Goldsmith (2001)

Goldsmith’s seminal work “Unsupervised Learning of the Morphology of
a Natural Language” immeasurably impacted this particular field of NLP,
having over 670 citations on Google Scholar. While earlier work e.g. Wothke
(1986) provided initial guidance in applying machine learning techniques to
a subset of morphological problems, Goldsmith’s work is arguably the first
attempt at a comprehensive and general analysis of natural language mor-
phology.15

Goldsmith describes the paper’s approach to morphology as “top-down,”
and more specifically as a, “Globally optimal analysis of the corpus.” The

12 See Hammarström, 2011 pg. 312
13 Hammarström, 2011 pg. 312
14 See Goldsmith and Reutter’s footnotes. They discuss this analysis at length.
15 Even if it is not the absolute first, it is certainly the most ambitious in its scope.

8



key insight for this approach is that the number of letters in a given list
of words is greater than the number of letters in a list of stems and affixes
generated from the parsing of the original list of words. This observation
provides the motivation for Goldsmith’s use of Minimum Description Length
(MDL). More succinctly, MDL asks, what is the most concise way to store
information about the given language’s morphology? For example, consider
a sample of three stems and two suffixes, which can be combined to form
any stem + suffix pattern. Listed exhaustively as individual instances, we
would have six entries:



stem1 + suffix1

stem1 + suffix2

stem2 + suffix1

stem2 + suffix2

stem3 + suffix1

stem3 + suffix2


However, MDL exploits the observation that by splitting up the stems and
suffixes, or any affix more generally, we can more compactly store the infor-
mation:


stem1

stem2

stem3


{
suffix1

suffix2

}

In this admittedly small example, storing stems and suffixes separately re-
duced the number of entries stored from 6 to 5. As the size of the corpus
analyzed increases, the advantage gained from storing morphological infor-
mation using this approach increases.

The algorithm used in Goldsmith’s system is not described, though he
does thoroughly ground the approach in a mathematical description.16 Un-
like Wothke’s semi-supervised approach, Goldsmith’s method is truly unsu-
pervised, general, and language independent. It requires no annotated train-
ing data and takes raw natural language text as input. When the system

16 Goldsmith (2006) does actual detail the algorithm used in his unsupervised MDL
approach.
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is tested on English and French data, the correct morphemes are identified
with 85% accuracy. With no annotated training data required, Goldsmith’s
system should be easily applicable to any language for which text corpora
are available.17

Unfortunately, Goldsmith’s article concludes with noting that unsuper-
vised analysis of compounds remains an unsolved problem. As it stands,
this particular approach will not be useful in analyzing German linking el-
ements. Furthermore, when it comes to a deeper linguistic analysis of the
MDL algorithm’s results, several spurious decisions are made. For example,
the related words abet, abetted, abetting are correctly analyzed as having the
uniform stem abet ; however, the corresponding suffixes are determined to be
∅, -ted, -ting. A syntagmatic analysis would usually conclude that an ad-
ditional -t- is inserted when suffixing occurs. Furthermore, this is arguably
an orthographical issue, rather than a linguistic one, since the doubling of
consonants in writing does not correspond to an increase in duration of the
spoken utterances. These criticisms presume that morphology is properly
analyzed as a concatenative process, a contentious claim which is examined
later in this essay.

2.4 Koehn and Knight (2003)

Koehn and Knight’s efforts at compound splitting bear direct relevance
to issue of linking elements as the source language for their work is German.
In particular, the authors even mention the presence and unpredictability of
linking elements, though no deeper linguistic analysis is attempted. Rather,
the process of compound splitting is treated as a means to an end. The
hope of the authors is that by splitting compounds in training sets, the
BLEU score of a machine translation system can be increased18; the primary
reason for this hypothesized performance increase is that compound splitting
can ameliorate the problem of data sparsity i.e. splitting compound nouns
provides more examples of individual nouns during the alignment phase.

Multiple options are considered as to how to collect and split the com-
pounds from a given corpus. One such possibility is using dynamic program-
ming.19 However, as the authors note, computational complexity is not an

17 As with most unsupervised learning techniques, Goldsmith’s system’s performance
increases as the amount of training data increases.

18 Koehn, 2003 pg.1
19 Koehn, 2003 pg.2
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issue in this case, so they elect to perform an exhaustive recursive search.
Since the goal of the paper is to improve the training of a machine trans-
lation system, the authors must decide upon a method for deciding when
to split a compound into its components and when to leave it whole. They
elect to use the geometric mean of the word frequencies of a compounds
parts.20 If compound occurs more frequently as a whole when compared to
the geometric mean of its parts, then the word is not split for the purposes
of improving alignment. For example, the word Aktionsplan as a compound,
occurs 852 times. Meanwhile, the potential split Aktions(5)-plan(710) has a
geometric mean of 59.6.21 In this instance, the compound will not be split
for the purposes of alignment.

The authors note that one of the initial flaws in the baseline approach is
that prefixes and suffixes are likely to be split off in error. To illustrate, the
problem is analogous to a compound splitter taking the word there and split-
ting off the due to its high frequency as an individual word in English. To
avoid this spurious analysis, the authors tag the German corpus with POS
tags.22 Potential splits can then be excluded based upon parts-of-speech.
For example, splits are limited to compound elements that have the tag of
NN, NE, ADJA, ADV, etc. This prevents the error of splitting frequently
occurring determiners for instance. When incorporating a few other heuris-
tics (such as the use of a parallel corpus), this method of compound splitting
achieved 99.1% accuracy against a gold standard reference set. Further-
more, once the split compounds are incorporated into the alignment phase
of a word based and phrase based machine translation system, the resulting
BLEU scores are increased by up to 0.039.23

Unfortunately, Koehn and Knight provide no linguistic analysis of link-
ing elements, merely mentioning their existence. In fact, they treat them
as largely an annoyance, stating that, “There are no simple rules for when
such letters may be inserted.24” Their solution is to simply allow for linking
elements to be inserted between any two words. While pragmatic, this de-
cision provides no guidance in actually analyzing linking elements. Though

20 Koehn, 2003 pg.3
21 The parentheses indicate the frequency of the individual components. Other splitting

options are given as well, however, this one conforms to the analysis proposed by Neef
(2015), which is the driving motivation for this paper.

22 Koehn, 2003 pg.4. The authors use the TnT tagger developed in Brants (2000).
23 Koehn, 2003 pg.6. Table 2 and Table 3 confirm these results.
24 Koehn, 2003 pg.2
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Goldsmith and Reutter’s approach to collecting compounds from a corpus
is likely to suffice, the use of a POS tagger to improve accuracy is another
possibility, which clearly benefited Koehn and Knight’s work. However, the
author’s driving motivation i.e. improving BLEU scores provides a useful
experimental metric following a collection and analysis of compounds con-
taining linking elements. After correctly splitting compounds based upon
Neef’s analysis of linking elements as belonging to the left element, we can
examine if such an analysis is beneficial to the training of an machine trans-
lation system. The likely answer would appear to be no. The authors note
that an “eager” splitting heuristic i.e. one which split as much as possible,
performed best in terms of BLEU score when using a phrase based system.
However, this should not deter an attempt at using Neef’s analysis; statistical
machine translation is a highly pragmatic field and the approach which im-
proves BLEU scores the most is not necessarily the linguistically motivated
one.

2.5 Botha, et al. (2012)

Botha et al. provide a novel approach to the task of modelling and
splitting German compounds. Whereas previous approaches e.g. Goldsmith
and Reutter, employed an exhaustive search that matched a predetermined
pattern to words in a corpus, Botha uses n-grams. Essentially, German
compounds are viewed as individual n-grams that do not have white-space
separating them in the text. Furthermore, their approach contains a great
deal of linguistic motivation, presciently conforming to some of Neef’s (2015)
analysis of compounds. In particular, the authors correctly conclude that
German compounds are dependent upon the right element i.e. in Eisenbahn,
bahn is the primary component. Meanwhile, the right element is dependent
upon the preceding context e.g. mit der in the phrase mit der Eisenbahn.
Thus, the authors propose a reverse n-gram model:

p(eisenbahn|mit der) ≡ p(bahn|mit der)× p(eisen|bahn)× p(#|eisen)

In the model proposed above “#” indicates the word boundary.25 More
importantly, Botha mentions the problem of analyzing linking elements in

25 Botha et al. uses $, however # is more common in linguistic writing.
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this model. Though the linguistic motivation is not explored, they arrive at,
according to Neef (2015), the correct analysis. Analyzing linking elements as
individual elements is likely to disturb the conditional probabilities e.g. for
Küchentisch, they wish to avoid P (küche|n). To counter this problem, link-
ing elements are merged onto the left element.26 This produces a conditional
of the form P (küchen|tisch).

The primary motivation of Botha et al. is to improve existing machine
translation systems, so the primary thrust of their experiments and discus-
sion centers around BLEU scores and other metrics following the training of
an MT system. They report little impact on BLEU.27 However, when the
resulting output is examined for precision in correctly analyzing compounds,
the improved model results in a 12% increase over the baseline i.e. greater
accuracy in producing the correct English translation of a German compound
noun. Furthermore, this is done at minimal cost to recall. Since the authors
do not discuss the actual implementation of the n-gram model at length, their
methodology is not of immediate use to analyzing linking elements. How-
ever, the encouraging element of their results is that the correct linguistic
analysis i.e. attaching linking elements to the left noun in a compound was
not detrimental to the performance of the MT system. This provides hope
that a linguistically compelling analysis of German compounding rules will
not conflict with the pragmatic goals of machine translation and other NLP
tasks.

3 German Linking Elements

3.1 Neef (2015)

In a paper currently undergoing peer review, Martin Neef, a professor of
linguistics at Technische Universität Braunschweig, examines the problems
with previous attempts at analyzing German linking elements. To reiter-
ate, these include nine potential candidates: -e, -er, -s, -es, -n, -en, -ns,
-ens, and -∅.28 Prior attempts at linguistically motivating the occurrence of
linking elements are explored comprehensively, this includes previous pho-

26 Botha et al., 2012 pg.246
27 The authors note that the negligible increase is probably due to compounds making

up only a relatively small amount of the overall translations.
28 Neef does not include the zero morpheme in his initial analysis, but many others do.
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netic, phonological, and semantic attempts. These analyses are classed as
functional analyses i.e. they implicitly assume that linking elements have a
specific function within the German language. However, in light of previous
failed efforts at functional analysis, Neef proposes a non-functional analysis.

By non-functional, Neef does not imply that linking elements are useless;
they are an essential component of well formed German words. Rather, non-
functional means that they do not have a specific linguistic purpose; they
simply exist. To this end, Neef posits that linking elements are properly
place as constituents of the left hand member of a compound noun e.g. in
Tagebuch, the linking element -e is properly understood as part of the pre-
ceding noun i.e. Tage. This movement away from syntagmatic morphology
has made great strides recently in providing analysis of seemingly complex
morphological problems.29 Neef points out that despite the wide variety of
compound stem forms in German, most lexemes are only associated with one
specific linking element i.e. it is predictable and non-random. Furthermore,
if a lexeme has multiple compound stem forms i.e. can take on different link-
ing elements, one usually predominates.30 When multiple compound stem
forms occur, one form usually has a frequency of over 90%. Furthermore,
Neef posits that only one compound stem form is productive i.e. only one
form can be used derivationally to form novel compounds.31 Though Neef
notes that it is impossible to prove conclusively which linking element of a
given lexeme is the regular productive one, the frequency can be measured
empirically. For instance, noted that in Goldsmith (1998), they measured
the frequency of the linking elements for Staat -en and -s at 0.11 and 0.89
respectively. This conforms to Neef’s prediction about frequency of multiple
compound stem forms. Furthermore, the more frequent element -s is the
productive one in this case.

Moving forward, Neef’s analysis, while plausible, could benefit from em-
pirically confirmed justifications.32 There are two elements to this analy-
sis. The first is additional linguistic motivation. The non-compositionality
of linking elements is discussed below in light of Ackerman’s (2009) work.

29 See Ackerman (2009) for a complete discussion on non-compositional, paradigmatic
morphology.

30 Neef, 2015 pg.25
31 Neef, 2015 pg.25
32 I do not mean to insinuate that I find Neef unconvincing. To the contrary, I believe

he is certainly correct. Rather, I mean that his theory could further benefit from
experimental results.
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Specifically, the hope is that an analysis of the distribution of linking el-
ements within the German nominal paradigm will conform to Ackerman’s
hypothesis of the low conditional entropy of seemingly complex morphologi-
cal systems. Before any linguistic analysis can be carried out, data must be
collected. This forms the computational component of the proposed experi-
ments. To this end, a brief discussion is given as to which concepts presented
in the literature review are best suited to the task at hand. Additionally,
further metrics for analysis are considered.

3.2 Proposal

3.2.1 Linguistic Motivations

Though external analysis of German linking elements results in an ob-
servation of byzantine complexity, our guiding principle of analysis must be
that any natural language must be simple to learn and use for its speakers.
If one vein of analysis results in baffling complexity, we must abandon it
in favor of a simpler explanation. Neef’s non-functional analysis of linking
elements does precisely this. After reviewing prior attempts phonetic, phono-
logical, semantic, and structural analysis, he concludes that none provide a
satisfactory account.33

The key to a linguistically motivated analysis lies in the problem of the
phrase external analysis. Our motivating hypothesis that a language must be
simple to learn and use says nothing about observed external complexity in a
language; the nine forms of German linking elements and their distributions
may appear opaque to outside observers (and probably are), however, this
pales in comparison to Finnish nouns, for example, which have 15 cases with
numerous noun classes i.e. each class is case marked differently from another
class, yielding thousands of possible combinations. However, neither the
moderate external complexity of German or the high external complexity of
Finnish prevents children from learning their native language. This ease of
acquisition leads us to conclude that a language must have internal simplicity
i.e. there must be linguistic clues that make an outwardly difficult language
easy to learn for its speakers.

With the hypothesis of internal simplicity in hand, we are left with the
possible conclusion that the syntagmatic approach to morphology is flawed;

33 Neef exhaustively examines the current literature on linking elements, and provides
numerous counter-examples for every prior attempt at functional analysis.
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syntagmatic refers to the view of words as being compositional in mean-
ing i.e. a word consists of a stem with morphemes concatenatively added
in sequence, yielding a complete meaningful unit. This approach has dom-
inated morphology in the post-Bloomfield era.34 Though such approaches
perform well on morphologically simple languages, such as English, the syn-
tagmatic hypothesis has shown remarkably weak explanatory power when
applied to more morphologically complex languages e.g. Finnish and other
Turko-Ugric languages. Recent advances however have been made by taking
a non-compositional approach to morphology.35 This suspicion of the syn-
tagmatic approach is not recent, with suspicions as to its explanatory power
going back 50 years:

I know of no compensating advantage for the modern descrip-
tive reanalysis of traditional paradigmatic formulations in terms
of morpheme sequences. This [morphemic analysis] seems, there-
fore, to be an ill-advised theoretical innovation . . . It seems that
in inflectional systems, the paradigmatic analysis has many ad-
vantages and is to be preferred . . . It is difficult to say anything
more definite, since there have been so few attempts to give pre-
cise and principled description of inflectional systems in a way
that would have some bearing on the theoretical issues involved
here.36

This non-compositional approach has been termed, “the Paradigm Cell
Filling Problem” or (PCFP).37 See ?? for an example of a paradigm. Each
noun class is restricted to a possible set of case markers. Determining a noun
declension becomes a question of which cell it fits into. This approach reduces
the learning morphology to the question of what licenses a speaker to make
inferences about the form i.e. morphological form, of a given novel word.
This problem of inference is further reducible to a question of measuring
conditional entropy.

34 Hammarström pg. 313
35 see Ackerman, 2009
36 Chomsky, 1965 pg.174
37 Ackerman, 2009 pg. 54
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Figure 1: Greek noun inflections. Pay particular attention to the Genitive
Singular and Accusative Plural, as they will serve as examples for our calcu-
lations.

The use of information entropy as a metric for change in predictability38 of
a given word form is particularly useful for the notion of learning morphology
by inference. It allows us to measure the uncertainty of a given word form
being realized and therefore allows us to determine, on average, the number
of guesses a speaker would require to choose the correct morphological form
of a word. Drawing from the work of Ackerman (2009) we begin with the
definition of entropy:

H(X) = −
∑

x∈X P (X)log2P (X)

Applying this definition to calculating the predictability of Greek genitive
singular forms is quite straightforward. Observe in ??39 that the genitive
singular has eight classes with five possible markers: (-u, -∅, -s, -u, -us, -os).
If we assume that all declensions are equally likely, with a probability of 1

8
,

then the entropy of the Greek genitive singular is:

H(GEN.SG) = −
(
3
8
log2

3
8

+ 1
8
log2

1
8

+ 2
8
log2

2
8

+ 1
8
log2

1
8

+ 1
8
log2

1
8

)
H(GEN.SG) = 2.156 bits

38 Shannon, 1948
39 Image borrowed from Ackerman (2013)
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With this result, the number of guesses needed to blindly choose the correct
declension for a given noun is:

22.156 = 4.312 guesses

This observed value of more than four guesses being necessary to choose
the proper Greek genitive form marks an upper bound on entropy for the
class. However, Ackerman (2013) notes that inference allows humans to per-
form much better than “random guessing.”40 Observe the co-variation be-
tween the genitive singular and the accusative plural forms. Given knowledge
of one, it should be possible to infer the other i.e. if we know the accusative
plural declension of a noun, it gives us information about its potential geni-
tive singular form. This ability to infer given prior information is known as
conditional entropy, notated as H(Y |X). For example, if one encounters a
Greek noun in the accusative plural with the ending -i, one can infer that its
genitive singular ending must be -us i.e. H(GEN.SG|ACC.PL = −a) = 0.
This observation demonstrates that speakers of a language can use inferential
knowledge to predict unseen word forms, sometimes with absolute certainty;
refer to ?? if you wish to confirm this observation. Sometimes, prior knowl-
edge does not reduce entropy to zero; however, it still results in an overall
reduction in entropy. Ackerman (2013) defines the conditional entropy of a
word form c1 given knowledge of a word form c2 as follows:

H(c1|c2) =
∑

r1

∑
r2
Pc1(r1)Pc2(r2)log2Pc1(r1|c2 = r2)

Taking as a working example the Greek accusative plural ending -a, if
this ending occurs, it leads to two possible genitive singular endings: in two
cases, we observe -o and in one case -∅. Using our working definition of
conditional entropy, this prior knowledge yields:

H(GEN.SG|ACC.PL = −a) = −
(
2
3
log2

2
3

+ 1
3
log2

1
3

)
H(GEN.SG|ACC.PL) = 0.918 bits

20.918 = 1.889 guesses

As we can see, prior knowledge greatly decreases the amount of uncer-

40 Ackerman, 2009 pg.441
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tainty present in the language. Ackerman (2013) calculated the average
conditional entropy for the genitive singular given all possible realizations of
the accusative plural, and found a conditional entropy of 0.594 bits, equating
to 20.594 = 1.188 guesses. Given that Neef views German linking elements in
the same framework as Ackerman i.e. as non-compositional, it is worth in-
vestigating the applicability of Ackerman’s work on conditional entropy. As
a starting point, given nine German linking elements, and assuming equal
likelihood, we can calculate the given entropy for correctly assigning a given
noun its correct linking element:

H(Linking Element) = −(1
9
log2

1
9
+ 1

9
log2

1
9
+ 1

9
log2

1
9
+ 1

9
log2

1
9
+...+ 1

9
log2

1
9
)

H(Linking Element) = 3.170 bits

23.170 = 9.000 guesses

This calculation serves as a baseline, an upper bound, on the unpredictability
of linking elements. If Ackerman’s analysis is applicable in this instance, it is
highly probable that we will uncover a lower conditional entropy, probably,
considering Ackerman’s other results, below 1 bit.

A linguistically motivated analytical account of German linking elements
should attempt to examine their potential place within the Paradigm Cell
Filling Problem i.e. given a noun N in a given case C, can its linking element
form be inferred? Ackerman’s work gives reason to believe so. Furthermore,
it gives us a quantifiable measure in conditional entropy (something which
evades many linguistic analyses). This question requires further investiga-
tion, and to do so requires data. Though some German compound noun
corpora are potentially available for analysis, they are likely to be small in
size.41 Thus the first step to an empirical evaluation of Neef’s analysis of
linking elements is data collection. An experimental approach is proposed
below.

41 Goldsmith (1998) mentions that after pre-processing, they had a corpus of 1341 lex-
icalized nouns for analysis. Koehn (2003) provides some hope, as their approach
started with the Europarl corpus (20 million words)
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3.2.2 Experimental Approach

As discussed, the first challenge in empirically testing Neef’s hypothesis
is data sparsity. Though he provided several examples of compound nouns
with their linking elements in his work, they are likely ad hoc i.e. as a native
German speaker, he produced them himself. Even if they are drawn from
a secondary source, there are still not enough to allow for any meaningful
analysis using NLP techniques. Thus, collection of German compound nouns
is the first necessary step.

Goldsmith (1998) mentions the scraping of Microsoft’s Encarta for Ger-
man words, with an initial 300,000 candidates (a candidate being a capital-
ized word).42 Though an admirable effort in 1998, currently, the EUROPARL
corpus seems a useful starting point for data collection, containing approxi-
mately 44 million German words.

Though Koehn and Knight demonstrated an alternative method to col-
lecting and splitting compound nouns, the prior methods used by Goldsmith
and Reutter are likely to suffice. Carrying out an exhaustive recursive search
is not a problem, since we are not concerned with computational resources.
Furthermore, Goldsmith and Reutter provide an in-depth explanation of their
methodology. This alone makes their approach worth adopting, as it will be
easiest to reimplement, and provides us with a baseline to ensure we are
performing compound collection and splitting properly. We would like our
collection and splitting to be precise and accurate as well. Though Koehn
and Knight were certainly successful, they incorrectly split compounds 15%
of the time; Goldsmith and Reutter achieved better performance in this re-
gard.

Once the collection task is completed, it seems likely that some level of
sorting will need to be done to the data. The goal of these experiments would
be to detect some underlying pattern in the occurrence of linking elements.
As a baseline, recalculating the frequency of occurrence of the linking ele-
ments of a given lexeme seems an appropriate starting point. Goldsmith and
Reutter only briefly discuss this effort and it would be helpful to have more
information. Additionally, after splitting compounds according to Neef’s
proposed analysis, the split compounds could then be used in the alignment

42 Goldsmith and Reutter do not seem to have put much emphasis on data collection.
This is possibly due to the paper being written quickly while they were researchers
at Microsoft, and since the paper is merely background work for Goldsmith’s later
work on unsupervised learning of morphology.
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phase of training an MT system, and then checked to see if the resulting
BLEU scores improved, etc. Again, as averred previously, BLEU scores in
no way indicate correct linguistic analysis. However, as Botha et al. (2012)
found, it would be encouraging to find that a supposedly correct linguistic
analysis can lead to improvements in practical applications. Finally, Neef’s
hypothesis that only one linking element for a given compound stem is pro-
ductive could be tested by using our data generatively. Specifically, the most
frequently occurring linking element of a given lexeme would be used, and
that left element could then be combined with other nouns in order to au-
tomatically coin novel German compounds. A list of these compounds could
then be given to German native speakers and checked for grammaticality.

4 Conclusion

An attempt has been made to give a cursory treatment of important de-
velopments in natural language processing within the domain of morphology.
This review was purposely limited in scope; unlike Hammarström (2011), who
looks a over 200 publications on the topic, it was never intended to be com-
prehensive. Rather, publications were evaluated in light of their potential
application to the specific problem of German linking elements. The notable
work of Goldsmith and Reutter (1998) provides the most straightforward ap-
proach to the collection of compound noun data. Additionally, these articles
were evaluated in light of Neef’s recent non-functional and non-syntagmatic
analysis of linking elements.

Proposed future experiments aim to evaluate Neef’s claims in light of
prior linguistic and NLP research; are they supported linguistically, and if
so, can this analysis be used to improve existing NLP systems, such as BLEU
scores in machine translation. The optimistic answer is yes, with the work
of Botha et al. (2012) demonstrating that a linguistically viable analysis
of German compounds is not necessarily detrimental to the results of NLP
systems. Additionally, if German linking elements prove analyzable based
upon Ackerman’s theory of low conditional entropy, then, moving forward,
attempts should be made at analyzing linking elements in other languages
e.g. Dutch and Finnish, using the same approach. The possibility remains
that after collecting the data, German linking elements will remain opaque to
any attempt at linguistic or empirical analysis. However, these unanswered
questions must be left to future research.
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