
Topics in Natural Language Processing

Shay Cohen

Institute for Language, Cognition and Computation

University of Edinburgh

Lecture 7

Log-Linear Models

The gradient of the log-likelihood of a log-linear model is the
difference between the average value of the features in the data and
the expected value of the features according to the model

Question: can we forego a probabilistic interpretation and focus on
the linear score?

Decoding with Log-Linear Models

Given an x, want to find the most likely y given an x:

y∗ = arg maxy p(y | x,w) = arg maxy
exp(w · φ(x, y))

Z(x,w)

= arg maxy exp(w · φ(x, y)) = arg maxy log exp(w · φ(x, y))

= arg maxy w · φ(x, y)

Linear Score Models

A non-probabilistic model that only considers the score

score(x, y,w) = w · φ(x, y)

Decoding remains the same:

y∗ = arg max
y

w · φ(x, y)

Can we train the model directly with this score?

Yes! For example, with the Perceptron.

Linear Score Models

A non-probabilistic model that only considers the score

score(x, y,w) = w · φ(x, y)

Decoding remains the same:

y∗ = arg max
y

w · φ(x, y)

Can we train the model directly with this score?
Yes! For example, with the Perceptron.

Training Linear Score Models

The Perceptron algorithm:

• Initialise w to 0.
• For T iterations

• For each labelled pair (x, ygold) in the data

I ypredict = arg maxy w · φ(x, y)
I w← w + φ(x, ygold)− φ(x, ypredict)

Intuition Behind Perceptron

Main update rule in step t:

w← w + φ(xt, ygold)− φ(x, ypredict)

• Features that fire in the correct structure positively predict the
structure, and if they don’t fire in the prediction, we need to
increase their weight to make them more “important” (increase
the score when they fire)

• If we don’t make a mistake, there won’t be an update!

Avoiding Overfitting with the Perceptron

The averaged Perceptron: maintain a waverage which is the average of
all weight vectors w after each update (whether it happened or not).

Return waverage as the final weight vector

Each w is most adapted to the last example it has seen. Averaging
treats each w as a separate classifier, and then takes the average of
all scores from all of these classifiers

Two Interpretations of the Perceptron

• The Mistake Bound Model

• Optimising an objective function

Perceptron Correctness (Mistake Bound Model)

Correctness guarantee:

Stochastic Gradient Descent

The Perceptron algorithm can be viewed as a stochastic subgradient
descent algorithm.

• Stochastic: instead of making an update to the full objective
function, summing over all examples, we make an update for an
example at a time

L(w) =

n∑
i=1

`i(w)

Update at each step with the gradient
∂`i

∂w
.

• How is the Perceptron related to SSGD?

Perceptron - More Intuition

Consider the minimisation minw maxy′{0, (φ(xi, y′)− φ(xi, yi)) · w}.
What does it mean?

Perceptron as Objective Maximisation

We usually think in terms of optimising an objective function (like
with log-linear models). Does the Perceptron optimise any function
for a training set (x1, y1), . . . , (xn, yn)?
Consider

P(w, xi, i ∈ [n]) = arg min
w
λ||w||22 +

1
n

∑
i

max
y′
{0,
(
φ(xi, y′)− φ(xi, yi)

)
·w}

• Maximising
(
φ(xi, y′)− φ(xi, ygold)

)
· w gives the y′ that is closest

to ygold in its score.
• Minimising the whole objective function tries to minimise this

score difference
• The ||w||22 term is for regularisation

Subgradient

To optimise this function P we can calculate its “subgradient”

P(w, xi, i ∈ [n]) = arg min
w
λ||w||22 +

1
n

∑
i

max
y′
{0,
(
φ(xi, y′)− φ(xi, yi)

)
·w}

This is a generalisation of the notion of gradient (because the max
function is not differentiable according to standard gradient
calculations), and it gives the update of the Perceptron with λ = 2:
w← w + φ(x, ygold)− φ(x, ypredict)

Note that we are doing “stochastic optimisation” – at each step
updating the weights with a single example

Support Vector Machines

Similar to the Perceptron, only with a slightly different objective
function:

arg min
w
λ||w||22 +

1
n

∑
i

max
y′
{0,∆(yi, y′) +

(
φ(xi, y′)− φ(xi, yi)

)
· w}

∆(yi, y′) is a loss function that tells how far yi is from y (for example,
accuracy of labels in a sequence)

Idea: We take into account not just the linear score, but also how
well y′ is according to some evaluation metric

Same update as the Perceptron, only we need to find ypredict such
that

ypredict = arg max
y′

∆(yi, y′) + φ(xi, yi)− φ(xi, y′)

Summary

• Different types of algorithms for linear model learning

• We learned about: log-linear models, linear models with the
Perceptron and linear models with Support Vector Machines

• There is an active area of research that adds nuances to these
ideas for better optimisation and other learning objectives

What is a Neural Network?

The Three Buckets (Andrew Ng)

• Traditional feed-forward/deep learning (classification)

• Convolutional neural networks (used for vision)

• Sequence learning: LSTM, recurrent NN (used for language)

• Another bucket: reinforcement learning?

Deep Learning – Why Now?

Neural Networks

• The area has developed its own terminology

• Logistic regression is a simple neural network with “softmax”
activation:

Training a Neural Network

The backprop algorithm:

• An application of the chain rule: the rate of change with respect
to a variable x is the sum of rate of changes with respect to
other variables zi multiplied by the rate of change of zi with
respect to x

∂f
∂x

=
d∑

i=1

∂f
∂zi

∂zi

∂x

• The “extra” variables we use are the activations in different
parts of the network: the derivative of the output with respect to
a parameter is the derivative of the output with respect to its
activation times the derivative of the activation with respect to a
parameter... and apply it recursively

What Happens When Deep is Really Deep?

The sigmoid function “squashes” values into the [0, 1] range

Vanishing Gradient Problem

Gradient descent works by checking how changes in the weights
make changes to the final output of the neural network

With sigmoid or tanh, the values at each layer are “squashed” into a
small range

This means that even large changes in the weights, especially in the
early layers, make small changes in the final output

⇒ slow convergence or even worse than that

Solution: ReLU activation (instead of sigmoid/tanh), Long Short
Term Memory networks (see next)

Recurrent Architectures

Output

Hidden

Inputs

Example applications: (1) neural MT; (2) character recognition; (3)
grammar learning; (4) language modelling.

There is an internal state that memorises context up to that point.
Similarity to HMMs?

How do we train a recurrent network?

Recurrent Architectures

Output

Hidden

Inputs

Example applications: (1) neural MT; (2) character recognition; (3)
grammar learning; (4) language modelling.

There is an internal state that memorises context up to that point.
Similarity to HMMs?

How do we train a recurrent network?

Training Recurrent Architectures

Outputs

Inputs

Hidden

• “Unroll” the inputs and the outputs of the network into a long
sequence (or larger structure)
• Then one can use backpropgation!

• Problem: vanishing gradient again...

Training Recurrent Architectures

Outputs

Inputs

Hidden

• “Unroll” the inputs and the outputs of the network into a long
sequence (or larger structure)
• Then one can use backpropgation!
• Problem: vanishing gradient again...

Long Short Term Memory (LSTM)

Replace each hidden unit with an LSTM unit at each time step t
An LSTM unit maintains a state Ct, just like a recurrent neural
network. It depends on the the previous state, the previous output
(ot−1) and the current input (xt)

• The current state is affected by a “forget” component that can
reduce the influence of previous activation

• The current state also takes into account current input and
previous output with an “input update” degree component

Ct = ftCt−1 + itĥt ĥt = tanh(WC[ot−1, xt] + bC)

ft and it are values between 0 and 1 based on a sigmoid over
ot−1 and xt

In addition, the output ot depends on the current state (Ct), the
previous output (ot−1) and the current input (xt)

Long Short Term Memory (LSTM)

Replace each hidden unit with an LSTM unit at each time step t
An LSTM unit maintains a state Ct, just like a recurrent neural
network. It depends on the the previous state, the previous output
(ot−1) and the current input (xt)

• The current state is affected by a “forget” component that can
reduce the influence of previous activation

• The current state also takes into account current input and
previous output with an “input update” degree component

Ct = ftCt−1 + itĥt ĥt = tanh(WC[ot−1, xt] + bC)

ft and it are values between 0 and 1 based on a sigmoid over
ot−1 and xt

In addition, the output ot depends on the current state (Ct), the
previous output (ot−1) and the current input (xt)

Long Short Term Memory (LSTM)

Replace each hidden unit with an LSTM unit at each time step t
An LSTM unit maintains a state Ct, just like a recurrent neural
network. It depends on the the previous state, the previous output
(ot−1) and the current input (xt)

• The current state is affected by a “forget” component that can
reduce the influence of previous activation

• The current state also takes into account current input and
previous output with an “input update” degree component

Ct = ftCt−1 + itĥt ĥt = tanh(WC[ot−1, xt] + bC)

ft and it are values between 0 and 1 based on a sigmoid over
ot−1 and xt

In addition, the output ot depends on the current state (Ct), the
previous output (ot−1) and the current input (xt)

LSTM Graphical Depiction

taken from Chung et al. (2014)

Sequence to Sequence Models

Encoder Decoder

• Each cell is an LSTM cell
• The encoder “encodes” the input into a vector, starting state
• The decoder “decodes” it to the output

Sequence to Sequence Models

Encoder Decoder

• Each encoder output is connected to each of the decoder cells
as input

Summary

• Large and deep neural networks have the “vanishing gradient”
problem

• Also true for recurrent architectures

• LSTMs are one way to fix that issue

• They implement sequence-to-sequence models (with and
without attention)

• Many off-the-shelf packages for implementing neural networks
and sequence-to-sequence models

