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Semirings

A flexible framework for denoting the operations and values that a
dynamic programme takes.

e Generalises CKY to the inside algorithm

e Can actually have richer semirings, such as ones that compute
expected values on the output structure (“the probability that NP
spans words 0 through 5”)

e Can be used in tandem with generic solvers of weighted logic
programmes



Example of a Weighted Logic Programme

We are given a sequence wy, ..., w, of some symbols.
prob(b,i)® = prob(a,i — 1) ® transition(a — b) ® emission(b, w;)
prob(a, 1)® = start_state(b) ® emission(a, wy)

Hidden Markov models and the forward algorithm:

e cmission are the emission probabilities
e transition are the transition probabilities
e start_state are the initial probabilities

e prob(b,i) gives the probability p(wy, ..., w;, S; = b)



Solving Weighted Logic Programmes

e Memoisation and dynamic programming

e Agenda algorithms. Roughly:

e Keep a queue (“agenda”) of unprocessed items and a chart
of processed items

e Dequeue an item x and create or update all items by using
information from the chart together with x. Put all the new
items in the queue

e Depending on the order by which we dequeue from the
agenda, we might process items several times

e Examples of agenda priority values: the value of an item,
the value of an item with A* heuristic



Reminder about Bayesian Inference

Bayesian inference:
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Sampling

Instead of finding the most likely structure, we randomly sample a
structure from the underlying distribution

If the distribution is peaked, then it will be roughly the same as
finding the highest scoring structure

One can also use “annealing” with sampling to find the highest
scoring structure



Sampling Algorithms

Goal: sample from a target distribution p(u)

For example, p(u) could be the posterior from a Bayesian model, in
which case u = (z,0)

Most common sampling algorithms: Markov Chain Monte Carlo
methods

|deal for cases in which we cannot compute the “normalisation”
constant such as with Bayesian models



Markov Chain Monte Carlo

The big picture:

Our sample space becomes a space of “states”
There is some strategy to probabilistically move between states

The strategy ensures that the transition between states will at
some point converge to the target distribution we are interested
N

The samples do not have to be independent, and usually are
not!

Very useful for cases in which we can calculate the target
distribution up to its normalisation constant (such as with
Bayesian inference)



Example of MCMC: Gibbs Sampling

Break a “state” into several parts, for example, two parts: z and ¢

Algorithm:

Let 6* and zo be some random values.
Repeat until convergence

e Sample z* from p(z | %)
e Sample 6* from p(6 | zo)
e Set 7o to be 7

Collect the samples 6* and z*

We can also break z into further parts and use “operators” to move
between states, making small changes to a bigger structure.

Strong relationship to search algorithms



More General: Metropolis-Hastings Algorithm

We are interested in sampling from p(u), but can only sample from a
proposal distribution g(u'|u)

Algorithm:

Initialise u with some value from 2

Repeat until convergence (W)
F(V\) = 20

e Sample ' from q(u/’|u)
e Calculate an acceptance ratio

e Set u + u' with probability «

Collect the samples u all through




Integer Linear Programming

Formulate the problem of inference as maximising a linear objective
with constraints

The variables in the objective are “pieces” of the structure

Useful technique to add “global” constraints to the inference
algorithm

Use off-the-shelf tools to find a solution, such as CPLEX or Gurobi
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Summary

e Inference in our context refers to finding an output for a given
input (decoding)

e ... or other type of information about the output

e Most common ways to do that in NLP: search algorithms,
dynamic programming, sampling algorithms, integer linear
programming



Solving an NLP Problem

When modelling a new problem in NLP, need to address four issues:

Learning



Log-Linear Models

To define a probability model over X x ), define a feature function

nd then define a log-linear model:
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p(y|x) =
where w is a weight vector.

Also sometimes written as

e Given a set of data (x1,y1), ..., (x4, y,) we need to find w. How?
e What is the role of ¢?



Role of ¢

e We see x and y through the glasses of ¢

e ¢ should choose parts of x and y that indicate each other.

For example: v 8 X sty
POS tagging: g/(;</\3) = \ vl “(\L\,[ |ett,
w./”k \(”5 O  ofw ~d 9 s Toos
)

Named entity recognition:

Novn



Training Log-Linear Models

Define the log-likelihood function:
L(w | xi,yi,i € [n]) = ) logp(yi | xi,w)
i=1

Gradient descent and other optimisation algorithms are our main tool

Need to be able to calculate the gradient of the log-likelihood.



Maximising the log-likelihood

w* = argmaxwL(W|x1,)’la . 7xn’yn)
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Gradient of Log-Linear Model

L(w | xi,yi,i € [n]) =ay i logp(yi | xi,w) =
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Gradient of a Single Summand
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Gradient of average log-likelihood
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Gradient of average log-likelihood
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Therefore, the gradient is the difference between empirical
expectations and expectations under the model



MaxEnt Modelling and Log-linear Models

Principle of maximum entropy: Keep the uncertainty about what
you didn’t observe as high as possible



MaxEnt Modelling and Log-linear Models

Principle of maximum entropy: Keep the uncertainty about what
you didn’t observe as high as possible

Maximising the entropy of the model while keeping the feature
expectations according to the model identical to the feature
expectations according to the data

IS equivalent to

Maximising the log-likelihood of a log-linear model with the same
feature functions



Regularisation

To avoid overfitting, add a term that ensures that weights do not
become too large in absolute value:

n
L(W ‘ Xiy Vis I € [I’L]) — Zlogp(yl | xiaw) o R(W)
i=1

Examples for R(w):

* R(w) = [jwll3 = 32, wi
o R(w) = [lwlli = 2_;[wil



Decoding with Log-Linear Models

Given an x, want to find the most likely y given an x:
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