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Estimation
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What is the log-likelihood?
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Maximising the log-likelihood
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Maximising the log-likelihood

Many of the maximisation algorithms are a variant of the update:
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Estimation

What is the average log-likelihood?
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What is the derivative?
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Derivative of Z(w) (¢?)= o2




Gradient of average log-likelihood ~ Z <= %)
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Gradient of average log-likelihood
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Therefore, the gradient is the difference between empirical
expectations and expectations under the model



Overfitting

The advantage of log-linear models: can have arbitrary features

The problem: too many features lead to overfitting



Regularisation

What is overfitting?
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L, Regularisation

New objective:
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L, Regularisation

New objective:
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Encourages sparse solutions, such that most of w; are exactly 0



Bayesian interpretation to regularlisation

A
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Could the answer be a MAP estimate for some prior?
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Bayesian interpretation to regularlisation

A
2
Could the answer be a MAP estimate for some prior?
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This means that p(w) is a Gaussian distribution with mean 0 and
variance 1/\

MLE with L,-regularisation is MAP estimate with Gaussian prior



Dimensionality Reduction

e Data can be more efficiently processed
e Easier to visualize data

e Gives a low-dimensional representations for the data that can
be used in other NLP problems.

e Recent example for representation learning: neural networks



Neural Networks

Example of a neural network:

The general case:
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OFT —
Activation Functions Qg nns
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Learning Problem

Training data:
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Objective function: -
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The Backpropagation Algorithm




Learning from Incomplete Data

e Semi-supervised learning
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e Latent variable learning
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e Unsupervised learning
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How to estimate a PCFG?

We learned how to estimate a PCFG from treebank

Reminder:



Unsupervised learning: PCFGs

How to estimate a PCFG from strings?



General case: Viterbi (or “hard”) EM

Model:
Observed Data:

Step O:

Step 1:

Step 2:

Repeat step 1



Maximum likelihood estimation

General principle: write down the likelihood of whatever you
observe, and then maximise with respect to parameters

Model: p(x,y | )
Observed: xi,...,x,
Likelihood:

L(xi,...,x, | 0) =



The EM Algorithm

e A softer version of hard EM

e Instead of identifying a single tree per sentence, identify a
distribution over trees (E-step)

e Then re-estimate the parameters, with each tree for each
sentence “voting” according to its probability (M-step)

e Semiring parsing: instead of CKY use the inside algorithm



EM: Main Disadvantage

Sensitivity to initialisation (finds local maximum)

Global log-likelihood optimisation in general is “hard”



Latent-variable learning

“Structure” is present

Some information is missing from model
Model: p(x,y,h | 0)

Observed: (x1,y1),. .., (X4, Vn)

Log-likelihood:
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Example of Latent-Variable Use in PCFGs

“Context-freeness” can lead to over-generalization:

Seen in data: Unseen in data (ungrammatical):
S S
NP VP NP VP
D N \Y NP N V NP
| | | | | TN
the dog saw P him saw D N
|
h



Latent-Variable PCFGs

The latent states for each node are never observed



Semi-supervised Learning

Main idea: use a relatively small amount of annotated data, and
exploit also large amounts of unannotated data

The term itself is used in various ways with various methodologies



Example: Word Clusters and Embeddings

e Learn clusters of words or embed them in Euclidean space
using large amounts of text

e Use these clusters/embeddings as features in a discriminative
model



Semi-supervised Learning: Example 2

Combine the log-likelihood for labelled data with the log-likelihood
for unlabelled data

L(xl,)’1,. . ,xn,yn,x’l,. . 7'x;n|9) —



Semi-supervised Learning: Example 3

Self-training



Semi-supervised Learning: Example 3

Self-training

Step 1:

Step 2:

Step 3:

Potentially, repeat step 2



