Topics in Natural Language Processing

Shay Cohen

Institute for Language, Cognition and Computation

University of Edinburgh

Lecture 8

Estimation

$$f(w|x_1, y_1, \dots, x_n, y_n) = \prod_{i=1}^n \frac{\exp\left(w^{\top}g(x, y)\right)}{Z(w)}$$
What is the legalikelihood?

What is the log-likelihood?

$$\frac{1}{2}(w) = \frac{1}{2} \exp(w^{T} y(x, y))$$

$$\frac{1}{2}(x, y)$$

$$\frac{1}{2}(x, y)$$

Maximising the log-likelihood

Maximising the log-likelihood

Many of the maximisation algorithms are a variant of the update:

$$w^{(t+1)} \leftarrow w^{(t)} + \mu v$$

where
$$v \in \mathbb{R}^d$$
 and $v_i = \frac{\partial L}{\partial w_i} \left(w^{(t)} \right)$.

Estimation

What is the average log-likelihood?

$$L(w|x_1, y_1, \dots, x_n, y_n) = \frac{1}{n} \sum_{i=1}^n \left(\sum_{j=1}^d w_j g_j(x_i, y_i) - \log Z(w) \right)$$

What is the derivative?

$$\frac{\partial L}{\partial w_j} = \begin{bmatrix} \frac{1}{h} & \sum_{i=1}^{n} g_i(x_i, y_i) \\ \frac{1}{h} & \sum_{i=1}^{n} g_i(x_i, y_i) \end{bmatrix} - \frac{\int_{-\infty}^{\infty} f(w)}{\int_{-\infty}^{\infty} f(w)}$$

Derivative of Z(w)

$$Z(w) = \sum_{x,y} \exp\left(\sum_{j=1}^{d} w_{j}g_{j}(x,y)\right)$$

$$\frac{\partial Z}{\partial w_{j}}(w) = \sum_{x,y} e^{x} \ell\left(\sum_{j=1}^{d} \omega_{x}, y_{j}(x,y)\right) \cdot g_{j}(x,y)$$

$$\frac{\partial Z}{\partial w_{j}}(w) = \sum_{x,y} e^{x} \ell\left(\sum_{j=1}^{d} \omega_{x}, y_{j}(x,y)\right) \cdot g_{j}(x,y)$$

$$\frac{\partial Z}{\partial w_{j}}(w) = \sum_{x,y} e^{x} \ell\left(\sum_{j=1}^{d} \omega_{x}, y_{j}(x,y)\right) \cdot g_{j}(x,y)$$

$$\frac{\partial Z}{\partial w_{j}}(w) = \sum_{x,y} e^{x} \ell\left(\sum_{j=1}^{d} \omega_{x}, y_{j}(x,y)\right) \cdot g_{j}(x,y)$$

$$\frac{\partial Z}{\partial w_{j}}(w) = \sum_{x,y} e^{x} \ell\left(\sum_{j=1}^{d} \omega_{x}, y_{j}(x,y)\right) \cdot g_{j}(x,y)$$

Gradient of average log-likelihood

$$\frac{\partial L}{\partial w_j} = \left(\frac{1}{n} \sum_{i=1}^n g_j(x_i, y_i)\right) - \sum_{x, y} \frac{\exp(\sum_{k=1}^d w_k g_k(x, y))}{Z(w)} g_j(x, y)$$

$$\frac{1}{n}\sum_{i=1}^{n}g_{j}(x_{i},y_{i})=$$
 averge of $j_{j}(x,y)$ on the

$$\sum_{x,y} \underbrace{\frac{\exp(\sum_{k=1}^{d} w_k g_k(x,y))}{Z(w)}}_{g_j(x,y)} g_j(x,y) = \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Gradient of average log-likelihood

$$\frac{\partial L}{\partial w_{j}} = \left(\frac{1}{n} \sum_{i=1}^{n} g_{j}(x_{i}, y_{i})\right) - \sum_{x,y} \frac{\exp(\sum_{k=1}^{d} w_{k} g_{k}(x, y))}{Z(w)} g_{j}(x, y)$$

$$\frac{1}{n} \sum_{i=1}^{n} g_{j}(x_{i}, y_{i}) = \qquad \qquad \text{for } \mathcal{I}(y)$$

$$\sum_{x,y} \frac{\exp(\sum_{k=1}^{d} w_{k} g_{k}(x, y))}{Z(w)} g_{j}(x, y) = \qquad \qquad \text{according}$$

Therefore, the gradient is the difference between empirical expectations and expectations under the model

Overfitting

The advantage of log-linear models: can have arbitrary features

The problem: too many features lead to overfitting

Regularisation

What is overfitting?

L₂ Regularisation

New objective:

New objective:
$$G(w|x_1,y_1,\ldots,x_n,y_n) = L(w|x_1,y_1,\ldots,x_n,y_n) \bigcirc \lambda ||w||_2^2$$

where $||w||_2^2 = \sum_{i=1}^d w_i^2$

Partial derivatives:

$$\frac{\partial G}{\partial w_j} = \frac{\partial L}{\partial w_j} - \chi \chi \cdot \omega_j$$

L_1 Regularisation

New objective:

$$G(w|x_1, y_1, \dots, x_n, y_n) = L(w|x_1, y_1, \dots, x_n, y_n) - \lambda ||w||_1^2$$

where
$$||w||_1^2 = \sum_{i=1}^d |w_i|$$

Encourages sparse solutions, such that most of w_i are exactly 0

Bayesian interpretation to regularlisation

$$G(w|x_1, y_1, \dots, x_n, y_n) = L(w|x_1, y_1, \dots, x_n, y_n) - \frac{\lambda}{2}||w||_2^2$$

Could the answer be a MAP estimate for some prior?

$$G(w|x_1,y_1,\ldots,x_n,y_n) \propto \log p(x_1,y_1,\ldots,x_n,y_n|w) + \log p(w)$$

$$p(w) \propto c \times c \left(-\frac{\lambda}{2} \sum_{i} w_{i}^{2}\right)$$

Bayesian interpretation to regularlisation

$$G(w|x_1, y_1, \dots, x_n, y_n) = L(w|x_1, y_1, \dots, x_n, y_n) - \frac{\lambda}{2}||w||_2^2$$

Could the answer be a MAP estimate for some prior?

$$G(w|x_1,y_1,\ldots,x_n,y_n) \propto \log p(x_1,y_1,\ldots,x_n,y_n|w) + \log p(w)$$

$$p(w) \propto$$

This means that p(w) is a Gaussian distribution with mean 0 and variance $1/\lambda$

MLE with L_2 -regularisation is MAP estimate with Gaussian prior

Dimensionality Reduction

- Data can be more efficiently processed
- Easier to visualize data
- Gives a low-dimensional representations for the data that can be used in other NLP problems.
- Recent example for representation learning: neural networks

Neural Networks

Example of a neural network:

The general case:

that's the weight connecting neuron is to neuron j in layer

Activation Functions

٧٧

(1)
$$g(x)$$
 is differentiable
(2) $g'(x) = g(x)(1 - g(x))$

Learning Problem

The Backpropagation Algorithm

Learning from Incomplete Data

Semi-supervised learning

Small amounts of labelled data
and lage amounts of "valabeled" data

Latent variable learning

Some information about the structure is missing

Unsupervised learning

Had: siven only inputs, learn a decoden

How to estimate a PCFG?

We learned how to estimate a PCFG from treebank

Reminder:

Unsupervised learning: PCFGs

How to estimate a PCFG from strings?

General case: Viterbi (or "hard") EM

Model:

Observed Data:

Step 0:

Step 1:

Step 2:

Repeat step 1

Maximum likelihood estimation

General principle: write down the likelihood of **whatever** you observe, and then maximise with respect to parameters

Model: $p(x, y \mid \theta)$

Observed: x_1, \ldots, x_n

Likelihood:

$$L(x_1,\ldots,x_n\mid\theta)=$$

The EM Algorithm

- A softer version of hard EM
- Instead of identifying a single tree per sentence, identify a distribution over trees (E-step)
- Then re-estimate the parameters, with each tree for each sentence "voting" according to its probability (M-step)
- Semiring parsing: instead of CKY use the inside algorithm

EM: Main Disadvantage

Sensitivity to initialisation (finds local maximum)

Global log-likelihood optimisation in general is "hard"

Latent-variable learning

"Structure" is present

Some information is missing from model

Model: $p(x, y, h \mid \theta)$

Observed: $(x_1, y_1), ..., (x_n, y_n)$

Log-likelihood:

$$L(x_1,\ldots,x_n,y_1,\ldots,y_n|\theta) =$$

Example of Latent-Variable Use in PCFGs

"Context-freeness" can lead to over-generalization:

Seen in data:

Unseen in data (ungrammatical):

Latent-Variable PCFGs

The latent states for each node are never observed

Semi-supervised Learning

Main idea: use a relatively small amount of annotated data, and exploit also large amounts of unannotated data

The term itself is used in various ways with various methodologies

Example: Word Clusters and Embeddings

- Learn clusters of words or embed them in Euclidean space using large amounts of text
- Use these clusters/embeddings as features in a discriminative model

Semi-supervised Learning: Example 2

Combine the log-likelihood for labelled data with the log-likelihood for unlabelled data

$$L(x_1, y_1, \ldots, x_n, y_n, x'_1, \ldots, x'_m | \theta) =$$

Semi-supervised Learning: Example 3

Self-training

Semi-supervised Learning: Example 3

Self-training

Step 1:

Step 2:

Step 3:

Potentially, repeat step 2