Topics in Natural Language Processing

Shay Cohen

Institute for Language, Cognition and Computation

University of Edinburgh

Lecture 1

Topics in NLP

- We will cover the basic methodology in NLP
- There will be a focus on statistical learning
- Even more so, structured prediction

Topics in NLP

Prerequisites:

- Some familiarity with machine learning and probability
- If something is unclear, ask!

Things to Do:

- Student presentations (20%)
- Brief paper responses (15%)
- Assignment (10%)
- Essay (55%)

Office hours: By appointment

NLP in the Old Days

1950s-1980s: handwritten rules

IBM'S WATSON (right) AND FRIENDS:† For a mathematical wizard . . .

NLP Now

late 1980s until now: statistical learning

Learning

Learning is:

- Experience translated into expertise/knowledge
- Memorisation with generalisation

Machine learning and NLP:

- Experience = Training data
- Knowledge = Decoder or Prediction Model
- Used to either mimic humans or transcend their abilities

What is a Model?

From Merriam-Webster:

- a usually small copy of something
- a set of ideas and numbers that describe the past, present, or future state of something (such as an economy or a business)

When is a model a good model?

What is a Statistical Model?

Predict the future. Probabilistically.

Probability and Statistics: Reminder

Probability distribution? Example: unigram model

$$\Omega = \{ the, cat, dos, s.t, chan \}$$

$$p: \Omega \rightarrow Lo, 1) - p(\omega) \text{ is other probability attended to } \omega$$

$$p(\omega) \geq 0$$

$$\sum_{w \in \Omega} p(w) = 1$$

$$\int p(\omega) d\omega = 1$$

Random variables

X: 2 -> N1,

Random variable:
$$X: \Omega \to \mathbb{R}$$
 $\Delta = \{ +L, dy, cat, ... \}$
 $X_{\alpha}(\omega) = count of a's in \omega$
 $X_{\alpha}(the) = 0 \qquad X_{\alpha}(cat) = 1$
 $\Omega_{2} = \{ -Ld, -ing, -ion \}$
 $X_{\alpha}(\omega) = suffix of the word$

Random variables induce probability distribution:

Model Family

A set of probability distributions (unigram example):

Parameters

A set of parameters:

(A) for $\theta \in \Theta$ plule)

$$\mathcal{M} = \{ p(\omega | \theta) \mid \theta \in \Theta \}$$

unisram

find ~ 9

that characterizes what mid expect

for p(vd)

 $\theta \subseteq \mathbb{R}^{V-1}$ s.t. $12\theta, 20$

Another Parametrisation

Rely on properties of the words:

$$\theta$$
 will be just a vector of length 20
 θ_{α} θ_{α} , θ_{α} ,

Estimation

What is training data?

Estimation

What is the fit of the data to the model?

NLP Problem Example: Document Classification

NLP Problem Example: POS Tagging

map words to their part-of-speech tags

NLP Problem Example: Parsing

map sentences to their syntax

$$\Omega = \{(s, t) \mid s \text{ is a tax}\}$$

NLP Problem Example: FrameNet Parsing

find predicate-argument structure

Back to Modelling

What if the space to model is complex? Modelling documents.

Modelling a Problem

- Define a sample space
- Define the structure of the sample space
- Decide on a parametrisation

Then one can proceed with data collection and learning

Modelling - Tradeoffs

- "Exact copy", detailed
- Not too many parameters
- Efficient to work with

Next class

Paradigms in statistical learning

- Frequentist approaches
- Bayesian approaches
- "Computer science approaches?"