Better Word Representations with Recursive Neural Networks for Morphology

Topics In Natural Language Processing 23rd February 2016

Based on: Luong et al., CoNLL (2013)

Presented by: Paul W. Coles s1523545@sms.ed.ac.uk

Contents

1. Background

Lexical Semantics Vector-Space Lexical Semantics Neural-Net Language Modelling Natural Language Morphology

2. Representing Morphology with Recursive Neural Networks

Reference Morphological Representations Context-Insensitive Morphological RNNs Context-Sensitive Morphological RNNs

3. Discussion

Evaluation
Conclusions
Some Questions...

Background

Background: Why is lexical meaning a hard problem? [a brief view!]

TABLE

Polysemy:

Combinatorial semantics:

dining table camping table

Firth, 1957

You shall know a word by the company it keeps.

Background: Vector-Space Lexical Semantics

Occurrence Matrix

	d ₁ = IKEA catalogue	d ₂ = Wikipedia article 'Earth'	d ₃ = climate report	d _n
w ₁ = table	643	12	33	
w ₂ = chair	432	0	21	
w ₃ = environment	23	54	553	
W _n				

Frequency counts

Other vector spaces possible (e.g. tf-idf).

Background: Vector-Space Lexical Semantics

vector lexical representations

table environment chair

cosine angle (or other vector similarity measure)

$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

word similarity

1 => identical

table:chair

chair:environment

0 => orthogonal

Background: Neural-Net Language Modelling

$$P(w_i \mid w_{i-(n-1)}, \dots, w_{i-1}) = \frac{\text{count}(w_{i-(n-1)}, \dots, w_{i-1}, w_i)}{\text{count}(w_{i-(n-1)}, \dots, w_{i-1})}$$

Old-School Language Modelling:

$$p('city' \mid 'Edinburgh \ is \ a') = \frac{C('Edinburgh \ is \ a \ city')}{C('Edinburgh \ is \ a')}$$

Problem: the 'curse of dimensionality':

Background: Neural-Net Language Modelling

Neural Language Model (NLM) - conceptual view

- 1. Look-up embedding for each context word from the matrix ${f C}$
- 2. Concatenate to make the neural net input vector \boldsymbol{X}
- 3. Train the net: forward pass, error function and back propagation
- 4. Apply softmax function to final hidden layer to give conditional distribution over the whole vocabulary: a vector where the **i**th element =

$$P(\mathbf{w}_t = \mathbf{i} \mid \text{context})$$

Background: Neural-Net Language Modelling

Neural Language Model (NLM) - generalises to unseen contexts

'the man sat down' not in training data, but 'the boy sat down' is

n-gram model (unsmoothed) assigns 0-probability to the 'the man sat down':

P('down' | 'the man sat') =
$$0$$

P('down' | 'the boy sat')
$$> 0$$

assuming 'boy' and 'man' have similar embeddings, NLM assigns a similar, non-zero probability to both, even if one of these 4-grams is unseen in training

P('down' | 'the man sat')
$$> 0$$

P('down' | 'the boy sat')
$$> 0$$

what about if 'luckily', 'unluckily' and 'fortunately' are in the training data, but 'unfortunately' isn't?

how is this a different case to 'boy' vs. 'man'?

Assumption:

We should represent words

Are words the best linguistic category for capturing semantic distinctions?

Are 'words' even a coherent category? Do they even exist?

Derivation Inflection **Present** Imperfect: Preterite: **Future:** denationalise Indicative: bibía bibí biberé bibo bibías bibiste biberás bibes bibía bibió biberá bibe bibíamos bibimos biberemos nationalise debibemos bibíais bibisteis biberéis bibéis bibían bibieron biberán biben national -ise Conditional: Imperative: **Present Imperfect** bibería Subjunctive: Subjunctive: bibe biberías biba biba bibiera bibería bibamos bibas bibieras nation -al biberíamos bibed biba bibiera biberíais biban bibamos bibiéramos biberían bibáis bibierais biban bibieran Gerund: **Past** bibiendo Participle: bibido

Productivity: recombination, preservation of meaning, neologism

Canaan -> Canannite

Cameron -> Cameronite

Minimal meaning-bearing unit: the morpheme

Cameron

-ite

Just more syntax? denationalise nationalise national -ise nation -al

Anglocentrism?

concatenation:

affix* + stem + suffix*

fusional language (e.g. Estonian):

multi-function morphemes

agglutinative language (e.g. Turkish):

all-in-one words

analytic language (e.g. Vietnamese):

morpheme = word

Complexity and Frequency

""distinctness" and "unconcerned" are very rare, occurring only 141 and 340 times in Wikipedia documents, even though their corresponding stems "distinct" and "concern" are very frequent (35323 and 26080 respectively)."

Morphologically-complex words occur less frequently

(Zipf Distribution)

But are equally meaningful to speakers!

Recursive Neural Networks

2. Representing Morphology with

Morphological RNNs: Reference Morphological Representations

'Gold standard' for comparison

'Morfessor' segmentation toolkit

Takes complexes, splits recursively, labels the morphemes:

Result: general word structures like (pre* stm suf*)+

Morphological RNNs: Context-Insensitive Morphological RNNs

Goal: Construct representations for unseen morphologically-complex words that closely match reference representations

Morphological RNNs: Context-Insensitive Morphological RNNs

Goal: Construct representations for unseen morphologically-complex words that closely match reference representations

Objective function: how different is the RNN output vector from target?

For each morphological complex X_i in a set of N training examples, define:

Reference Vector: $p_{x}(x_{i})$ Computed from 'Morfessor'

Constructed Vector: $p_c(x_i)$ RNN Output

Cost Function: $\mathbf{s}(\mathbf{x}_i) = \| p_c(\mathbf{x}_i) - p_r(\mathbf{x}_i) \|^2$ For each training example, \mathbf{x}

Objective Function: $J(\theta) = \sum_{i=1}^{N} s(x_i) + \frac{\lambda}{2} \|\theta\|_2^2$ Normalised sum over all examples

Morphological RNNs: Context-Sensitive Morphological RNNs

Goal: Use NLM training to learn embeddings, but for morphologically-complex words construct representations out of their morphemes

Morphological RNNs: Context-Sensitive Morphological RNNs

Use NLM to assign a score to each n-gram, n_i , that consists of words x_1 to x_n :

$$s\left(n_i
ight) = oldsymbol{v}^ op f(oldsymbol{W}[oldsymbol{x}_1; \ldots; oldsymbol{x}_n] + oldsymbol{b})$$
 where $oldsymbol{W} \in \mathbb{R}^{h imes nd}$ $oldsymbol{b} \in \mathbb{R}^{h imes 1}$ $oldsymbol{v} \in \mathbb{R}^{h imes 1}$

Objective function:

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} \max \left\{ \begin{array}{l} 0 \\ 1 - s(n_i) + s(\overline{n}_i) \end{array} \right.$$

3. Discussion

Evaluation

- Take Wiki snapshot, perform text normalisation
- Candidate pairing from WordNet synsets, human similarity ratings
- 50-dimensional embeddings for words and morphemes based on 10 word windows
- Benchmark performance at word similarity task over standard datasets. These lack morphologically-complex words, so also test on new 'rare words' dataset
 - Note: v. rare words perfectly understandable ('acquirement')
 - Made using statistics on frequency in Wikipedia
- Compare performance to Collobert et al and Huang et al embeddings
- Conclusion: context-sensitive RNN model outperforms baseline models on all datasets at word-similarity task

Conclusions

- Combining RNN and NLM means "better" word representations are learned
- Two advantages:
 - o deals with rare, complex words
 - o gives "more principled" way to handle unknown tokens (construct from morphemes)
- They claim:
 - o given that English has weak inflectional morphology, the system could "yield even better performance" applied to morphologically-rich languages (Turkish, Finnish)
 - -- they don't mention non-concatenative languages

Some Questions...

- Isn't this structure implicit in existing word embeddings? My Mikolov-trained model knows what a plural noun is!
 - Mikolov-style embeddings might distinguish 'apple' and 'apples' and extend this to 'table',
 'tables'. But '+s for plural' is pretty simple as morphological operations go...
- Actual natural-language morphology vs. stem-affix concatenation operation:
 - Good luck with Hebrew...
 - ...or Mandarin
 - o ...or 'be' and 'is'...
- Is word similarity so good an indication of semantic understanding? Any extrinsic examples of this actually helping?
 - QA?
 - o IR?
 - MT?

Questions?

Paul W. Coles s1523545@sms.ed.ac.uk