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Introduction         The Semantic Role Labeling task 

 
  Semantic roles: labels that capture aspects of the semantics of the relationship between 

predicate and argument while abstracting over surface syntactic configurations 
➢  Predicate - Argument 

➢  Agent - Patient 

[Michael]Agent eats [a sandwich]Patient. 

[A sandwich]Patient is eaten by [Michael]Agent . 
 

❖  Common Role Annotation Frameworks: 
• FrameNet: frame-specific roles 
• PropBank:  Proto-roles 
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Introduction         PropBank 

Contingency table between syntactic function and semantic role for 
 two core roles and two adjunct roles (counts from CoNLL 2008). 

➢  84.5% of A0 (Proto-Agent) roles are subjects 

➢  58.4% of A1 (Proto-Patient) roles are objects 

 

★  Linking theory assumption- tendency of semantic role to 

 be mapped onto single syntactic function 
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Introductio    The Semantic Role Labeling task 

 
Goal: automatically classify the arguments of a predicate with semantic roles  

Full SRL system: 

➢  predicate identification 

➢  argument identification 

➢  argument classification 

 
Challenge: computational treatment of syntactic alternations 
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Introduction     Supervised SRL 

 
Supervised approaches:  
➢  parse the training corpus       
➢  match labeled semantic roles to syntactic functions 
➢  extract features from the parse tree 
➢  train a probabilistic model on the features 

 
 
Hand-labeled data are domain & language specific and expensive to produce . 

 

Solution: mechanism for inducing the semantic roles from unlabeled data 
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But 



Problem Formulation        Clustering 

 
Αrgument classification as a clustering problem: 

➢  A set of clusters for each predicate (predicate specific PropBank roles) 

➢  Each cluster corresponds to a semantic role 

➢  Ideally one-to-one mapping between each cluster and each semantic role  

 

Reformulated task :  

➢  assign the arguments of a specific predicate to one of the clusters associated with it 
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Problem Formulation  How to deal with syntactic alternations? 

 Each predicate is associated with a standard linking: the most frequent mapping of the 

syntactic function of its arguments to semantic roles. 
[Michael]A0 eats [a sandwich]A1. 

➢  standard linking for predicate ‘to eat’:  

○  Subject-A0 

○  Object-A1 

Canonical function: the syntactic function an argument would have had, if the standard 
linking had been used. 

[A sandwich]Patient is eaten by [Michael]Agent . 

➢  canonical function for argument ‘A sandwich’: Object 8 



Problem Formulation     Sub-problems 

1)  Detection of non-standard linkings 

2)  Canonicalization: determine canonical function 

3)  Clustering according to canonical function 

 

Sub-problems 1 & 2 rely on the distribution p(F) over the possible canonical functions F of an 

argument. 

 

3) For each predicate we have K clusters: 

Order syntactic functions by occurrence frequency. 

●  For each of the K-1 most frequent functions allocate a separate cluster.  

●  Assign all remaining functions to the Kth cluster. 
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Model      How do we estimate 
p(F) ? 
➢  Extension of logistic classifier with latent variables 

to avoid overfitting 

Goal: learn the canonical function of arguments for 

each predicate  

Training data: parser output - most observed syntactic 

functions will correspond to canonical functions 

Features: at or below node representing argument 

head in parse tree  
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X1, X2, X3: observed features 
Z1, Z2: binary latent variables 
Y: observed target 

The logistic classifier with latent variables illustrated as a 
graphical model in unrolled form for M=2 and N=3. 



Model      How do we estimate 
p(F) ? 
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➢  probability distribution over the target variable 
Y and the latent variables Z, conditional on 
the input variables X 

➢  each of the feature functions φ is associated 
with a parameter θ 

➢  For a training set of inputs c and 
corresponding targets d, we obtain the 
maximum-likelihood parameters by finding 
the θ maximizing l(θ) 



Model  
         
    Feature engineering 

Dependency graph of a sample sentence from the 
corpus  
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Features extracted: 
predicate lemma, argument lemma, argument POS, preposition involved (if any), lemma 
of left-most/right-most child of the argument, POS of left-most/right-most child of 
argument, a key formed by concatenating all syntactic functions of the argument’s 
children 
 
➢  The features for the argument maker are:  

[sell, maker, NN, –, the, auto, DT, NN, NMOD+NMOD]  
 
➢  The target for this instance (and observed syntactic function) is SBJ. 

 
 

     
    
   

 



Evaluation         
       ➢ created gold standard role labeled argument instances 

➢ 10 clusters for each predicate 

Measures 

➢ cluster purity (PU) 

 

 

Let K denote the number of clusters, ci the set of instances in the i-th cluster and gj the set of instances 
having the j-th gold standard semantic role label.  
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Evaluation 
         
  Measures 

 
➢ cluster accuracy (CA) 

➢ cluster precision (CP) 

➢ cluster recall (CR) 
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TP : number of pairs of instances which have the same 
role and are in the same cluster, 
TN : number of pairs of instances which have different 
roles and are in different clusters 
FP : number of pairs of instances with different roles in 
the same cluster  
FN : number of pairs of instances with the same role in 
different clusters  

     
    
   



Evaluation      Performance 

 ➢  better than the baseline syntactic function model 
 

➢  successful in detecting alternate linkings 
 

➢  higher cluster purity score compared to the Grenager and Manning’s system  
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Summary 
➢  Novel framework for unsupervised role induction   

    

➢  Concept: detect alternate linkings and find their canonical syntactic form  
 

➢  Model: 
extends the logistic classifier with latent variables 
trained on parsed output which is used as a noisy target for learning  
 

➢ Potential:  
embed argument identification system 
replace treebank trained parser with chunker 
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