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Administrativia

e The schedule for presentations and brief responses was sent to
everybody

e One slot with three presenters

e Please plan to come at 1pm to this lecture
e Neural networks were quite popular

e Presentations: coordinate with me

e Regarding the essay: start thinking about it
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Log-likelihood maximlsatlon tries to have the model feature
expectations and the empirical distribution feature expectations
“agree”



Overfitting

The advantage of log-linear models: can have arbitrary features

The problem: too many features lead to overfitting



Regularisation

What is overfitting?
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New obijective:
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Encourages sparse solutions, such that most of w; are exactly 0
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Bayesian interpretation to regularlisation X
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Could the answer be a MAP estimate for sor@;rior?
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Bayesian interpretation to regularlisation
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Could the answer be a MAP estimate for some prior?
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This means that p(w) is a Gaussian distribution with mean 0 and
variance 1/

MLE with L,-regularisation is MAP estimate with Gaussian prior



Today'’s class

Learning from incomplete data




Learning from Incomplete Data

e Semi-supervised learning
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e Latent variable learning
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How to estimate a PCFG?

We learned how to estimate a PCFG from treebank

Reminder:
P
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Unsupervised learning: PCFGs
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How to estimate a PCFG from strings?



General case: Viterbi (or “hard”) EM
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Repeat step 1



Maximum likelihood estimation

General principle: write down the likelihood of whatever you
observe, and then maximise with respect to parameters

_——

Model:(p(x,y | 0) \

Observed: xq, ..., x,

Likelihood: L ( ¥, -.. X1 @) .

o= Tpete) = TT(E10al0)

A



The EM Algorithm

e A softer version of hard EM

e Instead of identifying a single tree per sentence, identify a
distribution over trees (E-step)

e Then re-estimate the parameters, with each tree for each
sentence “voting” according to its probability (M-step)

e Semiring parsing: instead of CKY use the inside algorithm



EM: Main Disadvantage

Sensitivity to initialisation (finds local maximum)

Global log-likelihood optimisation in general is “hard”



Latent-variable learning

“Structure” is present

Some information is missing from model
Model: p(x,y,h | 6)

Observed: (x1,y1),---, (Xn, Yn)
Log-likelihood:
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Example of Latent-Variable Use in PCFGs

“Context-freeness” can lead to over-generalization:

Seen in data:

Unseen in data (ungrammatical):
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Latent-Variable PCFGs
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the dog saw him the dog saw him

The latent states for each node are never observed



How to learn with latent variables?

e Expectation-Maximisation (EM)

e Current surging interest: method of moments and spectral
learning

e Revival of old methods: Neural networks

e Other methods



