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Administrativia

• The schedule for presentations and brief responses was sent to
everybody

• One slot with three presenters

• Please plan to come at 1pm to this lecture

• Neural networks were quite popular

• Presentations: coordinate with me

• Regarding the essay: start thinking about it



Last class

Log-linear models. p(x, y | w) =

Z(w) =

Gradient:

Log-likelihood maximisation tries to have the model feature
expectations and the empirical distribution feature expectations
“agree”



Overfitting

The advantage of log-linear models: can have arbitrary features

The problem: too many features lead to overfitting



Regularisation

What is overfitting?
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Bayesian interpretation to regularlisation
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Could the answer be a MAP estimate for some prior?
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Today’s class

Learning from incomplete data



Learning from Incomplete Data

• Semi-supervised learning

• Latent variable learning

• Unsupervised learning



How to estimate a PCFG?

We learned how to estimate a PCFG from treebank

Reminder:



Unsupervised learning: PCFGs

How to estimate a PCFG from strings?



General case: Viterbi (or “hard”) EM

Model:

Observed Data:

Step 0:

Step 1:

Step 2:

Repeat step 1



Maximum likelihood estimation

General principle: write down the likelihood of whatever you
observe, and then maximise with respect to parameters

Model: p(x, y | ✓)

Observed: x
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Likelihood:
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The EM Algorithm

• A softer version of hard EM

• Instead of identifying a single tree per sentence, identify a
distribution over trees (E-step)

• Then re-estimate the parameters, with each tree for each
sentence “voting” according to its probability (M-step)

• Semiring parsing: instead of CKY use the inside algorithm



EM: Main Disadvantage

Sensitivity to initialisation (finds local maximum)

Global log-likelihood optimisation in general is “hard”



Latent-variable learning

“Structure” is present

Some information is missing from model

Model: p(x, y, h | ✓)

Observed: (x
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Log-likelihood:
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Example of Latent-Variable Use in PCFGs

“Context-freeness” can lead to over-generalization:

Seen in data: Unseen in data (ungrammatical):
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Latent-Variable PCFGs
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The latent states for each node are never observed



How to learn with latent variables?

• Expectation-Maximisation (EM)

• Current surging interest: method of moments and spectral
learning

• Revival of old methods: Neural networks

• Other methods


