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Administrativia

I received suggested topics from most of you

• If you didn’t send a topic yet, please send it as soon as possible

• Next thing: scheduling everybody and allocating brief paper
responses

• I will try to allocate brief paper responses on the same topic you
present (but different papers)

• It will not always work out



Last class

Semiring inference: CKY and the inside algorithms



Parsing as Weighted Logic Programming

constit(a, i, j)� = constit(b, i, k)⌦ constit(c, k + 1, j)⌦ rule(a! b c)
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Goal: constit(S, 0, n)



Example of a Weighted Logic Programme

We are given a sequence w
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Hidden Markov models and the forward algorithm:

• emission are the emission probabilities

• transition are the transition probabilities

• start state are the initial probabilities

• prob(b, i) gives the probability p(w
1

, . . . ,w

i

, S

i

= b)



Example of a Weighted Logic Programme

We are given a sequence w

1

, . . . ,w

n

of some symbols.

prob(b, i)� = prob(a, i� 1)⌦ transition(a! b)⌦ emission(b,w

i

)

prob(a, 1)� = start state(b)⌦ emission(a,w

1

)

Hidden Markov models and the forward algorithm:

• emission are the emission probabilities

• transition are the transition probabilities

• start state are the initial probabilities

• prob(b, i) gives the probability p(w
1

, . . . ,w

i

, S

i

= b)



Weighted Logic Programming

Once we present the inference algorithm as a weighted logic
program, there are general-purpose algorithms to solve it.

• The “agenda” algorithm

• Search algorithms

• Tabular algorithms

If that interests you, take a look at http://www.dyna.org.



Parsing Using Search

State space:

Need a strategy to explore space.



Inference Using Graphs and Hypergraphs

Consider the context-free grammar:

S! NP VP
NP! DT NN
VP! VB NP
VB! chases
NN! dog | cat | chases
DT! the
NP! DT NN NN

We want to parse: The dog chases the cat

What are the potential constituents we can
create? (nonterminals with endpoint spans)



Today’s class

• Log-linear models and their estimation

• Regularisation



Estimation until now

• Count and normalise

• Corresponds to maximum likelihood estimate for multinomial
models



A Type-based POS Tagging Model

• Want to model p(tag | word)

• Can use a simple multinomial model, but...

• What about orthography and morphology?

• What about unseen words?



Linear Score for POS Tagging Model

⌦ =

Linear score:

Probability model:



Estimation

We observe (x
1

, y

1

), . . . , (x
n

, y

n

)

What is the likelihood?
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Estimation
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Maximising the log-likelihood
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Maximising the log-likelihood

Many of the maximisation algorithms are a variant of the update:
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Estimation

What is the average log-likelihood?
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What is the derivative?
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Derivative of Z(w)
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Gradient of average log-likelihood
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Therefore, the gradient is the difference between empirical
expectations and expectations under the model
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