
Topics in Natural Language Processing

Shay Cohen

Institute for Language, Cognition and Computation

University of Edinburgh

Lecture 7

Administrativia

I received suggested topics from most of you

• If you didn’t send a topic yet, please send it as soon as possible

• Next thing: scheduling everybody and allocating brief paper
responses

• I will try to allocate brief paper responses on the same topic you
present (but different papers)

• It will not always work out

Last class

Semiring inference: CKY and the inside algorithms

Parsing as Weighted Logic Programming

constit(a, i, j)� = constit(b, i, k)⌦ constit(c, k + 1, j)⌦ rule(a! b c)

constit(a, i, i)� = rule(a! w

i

)

Goal: constit(S, 0, n)

Example of a Weighted Logic Programme

We are given a sequence w

1

, . . . ,w

n

of some symbols.

prob(b, i)� = prob(a, i� 1)⌦ transition(a! b)⌦ emission(b,w

i

)

prob(a, 1)� = start state(b)⌦ emission(a,w

1

)

Hidden Markov models and the forward algorithm:

• emission are the emission probabilities

• transition are the transition probabilities

• start state are the initial probabilities

• prob(b, i) gives the probability p(w
1

, . . . ,w

i

, S

i

= b)

Example of a Weighted Logic Programme

We are given a sequence w

1

, . . . ,w

n

of some symbols.

prob(b, i)� = prob(a, i� 1)⌦ transition(a! b)⌦ emission(b,w

i

)

prob(a, 1)� = start state(b)⌦ emission(a,w

1

)

Hidden Markov models and the forward algorithm:

• emission are the emission probabilities

• transition are the transition probabilities

• start state are the initial probabilities

• prob(b, i) gives the probability p(w
1

, . . . ,w

i

, S

i

= b)

Weighted Logic Programming

Once we present the inference algorithm as a weighted logic
program, there are general-purpose algorithms to solve it.

• The “agenda” algorithm

• Search algorithms

• Tabular algorithms

If that interests you, take a look at http://www.dyna.org.

Parsing Using Search

State space:

Need a strategy to explore space.

Inference Using Graphs and Hypergraphs

Consider the context-free grammar:

S! NP VP
NP! DT NN
VP! VB NP
VB! chases
NN! dog | cat | chases
DT! the
NP! DT NN NN

We want to parse: The dog chases the cat

What are the potential constituents we can
create? (nonterminals with endpoint spans)

Today’s class

• Log-linear models and their estimation

• Regularisation

Estimation until now

• Count and normalise

• Corresponds to maximum likelihood estimate for multinomial
models

A Type-based POS Tagging Model

• Want to model p(tag | word)

• Can use a simple multinomial model, but...

• What about orthography and morphology?

• What about unseen words?

Linear Score for POS Tagging Model

⌦ =

Linear score:

Probability model:

Estimation

We observe (x
1

, y

1

), . . . , (x
n

, y

n

)

What is the likelihood?

f (x
1

, y

1

, . . . , x

n

, y

n

| w) =

Estimation

f (w|x
1

, y

1

, . . . , x

n

, y

n

) =
nY

i=1

exp

�
w

>
g(x, y)

�

Z(w)

What is the log-likelihood?

L(w|x
1

, y

1

, . . . , x

n

, y

n

) =

Maximising the log-likelihood

w

⇤ = arg max

w

L(w|x
1

, y

1

, . . . , x

n

, y

n

)

Maximising the log-likelihood

Many of the maximisation algorithms are a variant of the update:

w

(t+1) w

(t) + µv

where v 2 Rd and v

i

=
@L

@w

i

⇣
w

(t)
⌘

.

Estimation

What is the average log-likelihood?

L(w|x
1

, y

1

, . . . , x

n

, y

n

) =
1

n

nX

i=1

0

@
dX

j=1

w

j

g

j

(x
i

, y

i

)� log Z(w)

1

A

What is the derivative?

@L

@w

j

=

Derivative of Z(w)

Z(w) =
X

x,y

exp

0

@
dX

j=1

w

j

g

j

(x, y)

1

A

@Z

@w

j

(w) =

Gradient of average log-likelihood

@L

@w

j

=

1

n

nX

i=1

g

j

(x
i

, y

i

)

!
�
X

x,y

exp(
P

d

k=1

w

k

g

k

(x, y))

Z(w)
g

j

(x, y)

1

n

nX

i=1

g

j

(x
i

, y

i

) =

X

x,y

exp(
P

d

k=1

w

k

g

k

(x, y))

Z(w)
g

j

(x, y) =

Therefore, the gradient is the difference between empirical
expectations and expectations under the model

Gradient of average log-likelihood

@L

@w

j

=

1

n

nX

i=1

g

j

(x
i

, y

i

)

!
�
X

x,y

exp(
P

d

k=1

w

k

g

k

(x, y))

Z(w)
g

j

(x, y)

1

n

nX

i=1

g

j

(x
i

, y

i

) =

X

x,y

exp(
P

d

k=1

w

k

g

k

(x, y))

Z(w)
g

j

(x, y) =

Therefore, the gradient is the difference between empirical
expectations and expectations under the model

