Word representations: a simple and general method for semi-supervised learning

GUANNAN LU

MARCH 17,2015

Outline

Motivation

Word representations

- Distributional representations
- Clustering-based representations
- Distributed representations

Supervised evaluation tasks

- Chunking
- Named entity recognition (NER)
- Experiments & Results

• Summary

Semi-supervised approaches can improve accuracyIt can be tricky and time-consuming

- Semi-supervised approaches can improve accuracy
- It can be tricky and time-consuming
- A popular approach:
 - o use unsupervised methods to induce word features

- Semi-supervised approaches can improve accuracy
- It can be tricky and time-consuming
- A popular approach:
 - o use unsupervised methods to induce word features
 - × clustering
 - × word embeddings

- Semi-supervised approaches can improve accuracy
- It can be tricky and time-consuming
- A popular approach:
 - o use unsupervised methods to induce word features
 - × clustering
 - × word embeddings
- Questions:
 - Which features are good for what tasks?
 - Should we prefer certain word features?
 - Can we combine them?

Word Representations

Word representation:

- •A mathematical object associated with each word, often a vector
- Word feature: each dimension's value
 Conventional representation

 E.g. One-hot representation
 Problems:
 - × Data sparsity

Distributional representations

Co-occurrence matrix F: W × C
 Each row F_w is initial representation of word w
 Each column F_c is some context

Distributional representations

- Co-occurrence matrix F: W × C
 - Each row F_w is initial representation of word w
 Each column F_c is some context
- Function g: f = g(F)
 - Map F to f: $W \times d$ where d << C

Distributional representations

- Co-occurrence matrix F: W × C
 - Each row F_w is initial representation of word w
 Each column F_c is some context
- Function g: f = g(F)
 - Map F to f: $W \times d$ where d << C
- LSA: term-document matrix (Landauer et al., 1998)

Clustering-based representations

- Brown clustering (Brown et al., 1992)
 - A hierarchical clustering algorithm
 A class-based bigram language model
 Time complexity: O(V*K²)
 - ×V is the size of the vocabulary, K is the number of clusters.

o Limitations :

- × Only based on bigram statistics
- × not consider word usage

Distributed representations

Not to be confused with distributional representations!

Distributed representations

- Not to be confused with distributional representations!
- also known as word embeddings
- dense, real-valued, low-dimensional
- Neural language models

Distributed representations

- Collobert and Weston embeddings (2008)
 Neural language model
 Discriminative and non-probabilistic
 General architecture (e.g. SRL, NER, POS tagging)
 Differences on implementation
 - Not achieve the low log-rank
 Orrupt the last word for each n-gram
 Learning rates are separated

Distributed representation

HLBL embeddings(2009)

- o Log-bilinear model
 - × Predict the feature vector of the next word

o Hierarchical structure (binary tree)

- × Represent each word as a leaf with a particular path
- Calculate the product of the probability of each binary choice

Evaluation tasks

• Chunking: syntactic sequence labeling oCoNLL-2000 shared task **o**CRFsuite **O**Data **The Penn Treebank** ×7936 sentences(training) × 1000 sentences (development)

Evaluation tasks

• NER: sequence prediction problem • The regularized averaged perceptron model (Ratinov and Roth, 2009) •CoNLL03 shared task ×204k words for training, 51k words for development, 46K words for testing Out-of-domain dataset: MUC7 formal run (59K words)

- Word features: w_i for i in {-2, -1, 0, +1, +2},
 Previous two predictions y_{i-1} and y_{i-2}
 w_i ∧ w_{i+1} for i in {-1, 0}.
 Current word x_i
- Tag features: w_i for i in $\{-2, -1, 0, +1, +2\}$, $t_i \wedge t_{i+1}$ for i in $\{-2, -1, 0, +1\}$. $t_i \wedge t_{i+1} \wedge t_{i+2}$ for i in $\{-2, -1, 0\}$. x_i word type information: all-capitalized, is-capitalized, all-digits, alphanumeric, etc.
- Embedding features [if applicable]: e_i[d] for i
 Prefixes and suffixes of x_i, if the word contains in {-2, -1, 0, +1, +2}, where d ranges over the hyphens, then the tokens between the hyphens dimensions of the embedding e_i.
 Tokens in the window c =
- Brown features [if applicable]: *substr*(*b_i*, 0, *p*) for *i* in {-2, -1, 0, +1, +2}, where *substr* takes the *p*-length prefix of the Brown cluster *b_i*.
 - (x_{i-2}, x_{i-1}, x_i, x_{i+1}, x_{i+2})
 Capitalization pattern in the window *c*Conjunction of *c* and y_{i-1}.

NER

Chunking

Experiment

- Unlabeled data
- RCV1 corpus (63 millions words in 3.3 million sentences)
- Preprocessing technique(Liang, 2005)
 - Remove all sentences that are less than 90% lowercase az.

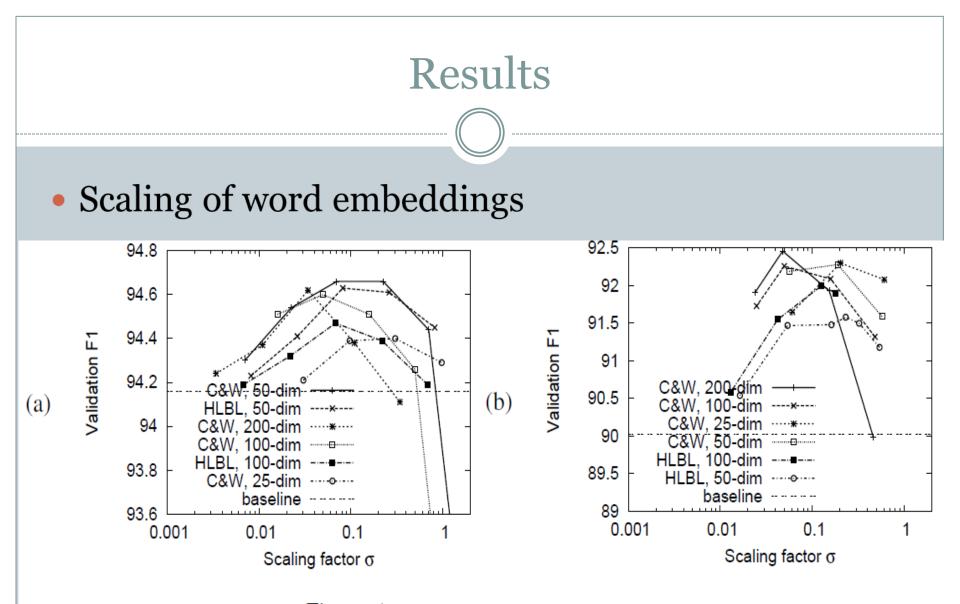


Figure 1: Effect as we vary the scaling factor σ (Equation 1) on the validation set F1. We experiment with Collobert and Weston (2008) and HLBL embeddings of various dimensionality. (a) Chunking results. (b) NER results.

Results

Capacity of word representations

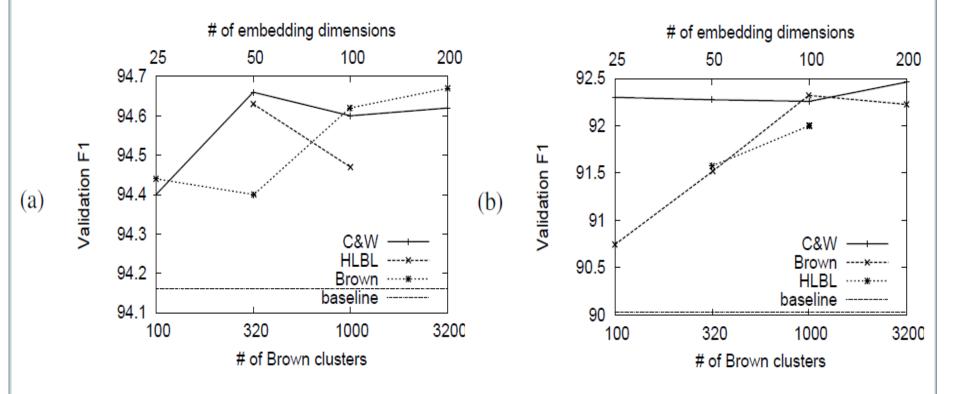


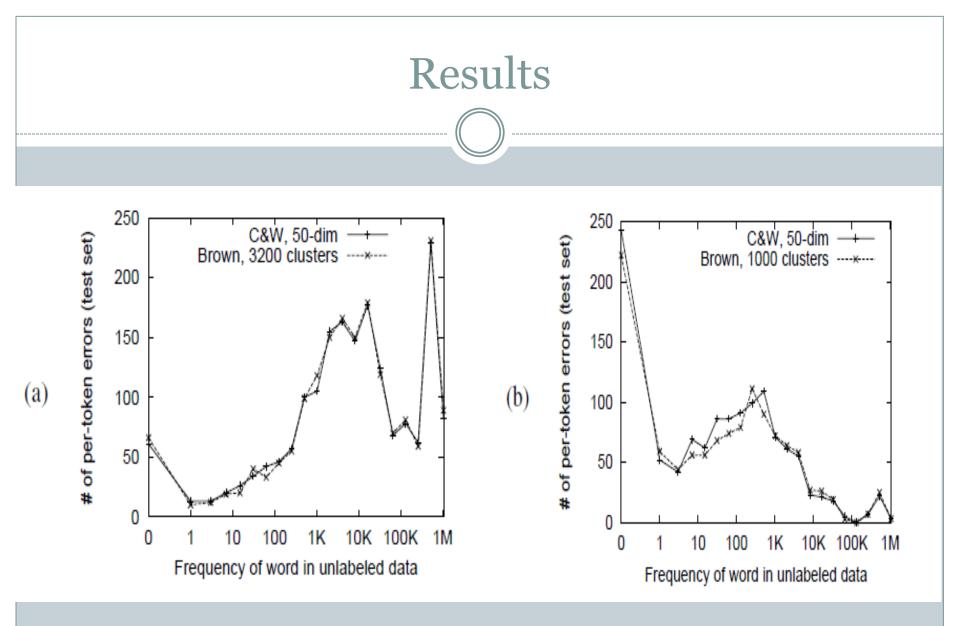
Figure 2: Effect as we vary the capacity of the word representations on the validation set F1. (a) Chunking results. (b) NER results.

Results

System	Dev	Test
Baseline	94.16	93.79
HLBL, 50-dim	94.63	94.00
C&W, 50-dim	94.66	94.10
Brown, 3200 clusters	94.67	94.11
Brown+HLBL, 37M	94.62	94.13
C&W+HLBL, 37M	94.68	94.25
Brown+C&W+HLBL, 37M	94.72	94.15
Brown+C&W, 37M	94.76	94.35
Ando and Zhang (2005), 15M	-	94.39
Suzuki and Isozaki (2008), 15M	-	94.67
Suzuki and Isozaki (2008), 1B	-	95.15

System	Dev	Test	MUC7
Baseline	90.03	84.39	67.48
Baseline+Nonlocal	91.91	86.52	71.80
HLBL 100-dim	92.00	88.13	75.25
Gazetteers	92.09	87.36	77.76
C&W 50-dim	92.27	87.93	75.74
Brown, 1000 clusters	92.32	88.52	78.84
C&W 200-dim	92.46	87.96	75.51
C&W+HLBL	92.52	88.56	78.64
Brown+HLBL	92.56	88.93	77.85
Brown+C&W	92.79	89.31	80.13
HLBL+Gaz	92.91	89.35	79.29
C&W+Gaz	92.98	88.88	81.44
Brown+Gaz	93.25	89.41	82.71
Lin and Wu (2009), 3.4B	-	88.44	-
Ando and Zhang (2005), 27M	93.15	89.31	-
Suzuki and Isozaki (2008), 37M	93.66	89.36	-
Suzuki and Isozaki (2008), 1B	94.48	89.92	-
All (Brown+C&W+HLBL+Gaz), 37M	93.17	90.04	82.50
All+Nonlocal, 37M	93.95	90.36	84.15
Lin and Wu (2009), 700B	-	90.90	-

Chunking



Chunking

NER

Summary

• Word features

• in an unsupervised, task-inspecific, and model-agnostic manner

• The disadvantage

 Accuracy might be lower than a task-specific semisupervised method

• The contributions

- The first work to compare different word representations
- Combining different word representations can improve accuracy further

• Future work

- Induce phrase representations
- Apply to other supervised NLP systems

References

- Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D., & Lai, J. C. (1992). Class-based n-gram models of natural language. *Computational Linguistics*, 18, 467–479.
- Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. *ICML*.
- Landauer, T. K., Foltz, P.W., & Laham, D. (1998). An introduction to latent semantic analysis. *Discourse Processes*, 259–284.
- Liang, P. (2005). Semi-supervised learning for natural language. Master's thesis, Massachusetts Institute of Technology
- Mnih, A., & Hinton, G. E. (2009). A scalable hierarchical distributed language model. *NIPS* (pp. 1081–1088).
- Ratinov, L., & Roth, D. (2009). Design challenges and misconceptions in named entity recognition. *CoNLL*.
- Turian, J., Ratinov, L., & Bengio, Y. (2010, July). Word representations: a simple and general method for semi-supervised learning. In *Proceedings of the 48th annual meeting of the association for computational linguistics* (pp. 384-394). Association for Computational Linguistics.

Thank you!