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Semi-supervised approaches can improve accuracy
It can be tricky and time-consuming
A popular approach:

use unsupervised methods to induce word features
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» Semi-supervised approaches can improve accuracy
» It can be tricky and time-consuming
» A popular approach:
use unsupervised methods to induce word features
clustering
word embeddings
* Questions:
Which features are good for what tasks?
Should we prefer certain word features?
Can we combine them?




» Word representation:

A mathematical object associated with each
word, often a vector

» Word feature: each dimension’s value

» Conventional representation
E.g. One-hot representation

Problems:
Data sparsity
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Distributional representations
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» Co-occurrence matrix F: W x C
o Each row Fy is initial representation of word w
o Each column F. is some context

» Function g: f = g(F)
oMap Fto f: W x d where d <<C
» LSA: term-document matrix (Landauer et al., 1998)




» Brown clustering Brown etal., 1992)
A hierarchical clustering algorithm
A class-based bigram language model
Time complexity: O(V*K?)
V is the size of the vocabulary, K is the number
of clusters.

Limitations:
Only based on bigram statistics
not consider word usage



Not to be confused with distributional
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Not to be confused with distributional
representations!

also known as word embeddings
dense, real-valued, low-dimensional
Neural language models



Distributed representations
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» Collobert and Weston embeddings (2008)
Neural language model

Discriminative and non-probabilistic
General architecture (e.g. SRL, NER, POS
tagging)

» Differences on implementation
Not achieve the low log-rank
Corrupt the last word for each n-gram
Learning rates are separated




HLBL embeddings(2009)

Log-bilinear model
Predict the feature vector of the next word

Hierarchical structure (binary tree)
Represent each word as a leaf with a particular
path
Calculate the product of the probability of each
binary choice



Chunking: syntactic sequence labeling
CoNLL-2000 shared task
CRFsuite
Data
The Penn Treebank
7936 sentences(training)
1000 sentences (development)



Evaluation tasks
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*» NER: sequence prediction problem

The regularized averaged perceptron
model (Ratinov and Roth, 2009)

CoNLLo03 shared task

204k words for training, 51k words for
development, 46K words for testing

Out-of-domain dataset: MUC7 formal run
(59K words)




Evaluation---Features
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e Word features: w; for i in {-2.-1.0, +1, +2},
w; Awiyq foriin{=1,0}.

e Tag features: w; for 7 in {-2.—1.0,+1,+2},
f; A tipp foriin {—2, —1,0, +1}. VAN SR VAN £
foriin {-=2,-1,0}.

e Embedding features [if applicable]: ¢;[d] for i
in {-2.—1,0,+1,+2}, where d ranges over the
dimensions of the embedding ¢;.

e Brown features [if applicable]: substr(b;.0, p)
foriin {=2.-1,0,+1,+2}, where substr takes
the p-length prefix of the Brown cluster b;.

o Previous two predictions y;-y and yj-y

o Current word x;

o y; word type information: all-capitalized,
i1s-capitalized, all-digits, alphanumeric, etc.

o Prefixes and suffixes of x;, 1f the word contains
hyphens, then the tokens between the hyphens
Tokens m the window ¢
(Xj=2, Xic1s X7 Xig 1, Xig2)

o Capitalization pattern in the window ¢

o Conjunction of ¢ and y;_1.

Chunking

NER




Unlabeled data

RCV1 corpus (63 millions words in 3.3 million sentences)

Preprocessing technique(Liang, 2005)

Remove all sentences that are less than 90% lowercase a-
Z.
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» Scaling of word embeddings
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Figure 1: Effect as we vary the scaling factor o (Equa-
tion 1) on the validation set FI. We experiment with

Collobert and Weston (2008) and HLBL embeddings of var-
ious dimensionality. (a) Chunking results. (b) NER results.




Results
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» Capacity of word representations
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Figure 2: Effect as we vary the capacity of the word
representations on the validation set FI. (a) Chunking
results. (b) NER resuls.
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Summary

» Word features

O in an unsupervised, task-inspecific, and model-agnostic
manner

» The disadvantage

o Accuracy might be lower than a task-specific semi-
supervised method

» The contributions
o The first work to compare different word representations

o Combining different word representations can improve
accuracy further

» Future work
o Induce phrase representations
o Apply to other supervised NLP systems
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Any questions?

Thank you!



