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 Questions: 

 Which features are good for what tasks? 

 Should we prefer certain word features? 

 Can we combine them? 
 



Word Representations 

Word representation: 
A mathematical object associated with each 

word, often a vector 

Word feature: each dimension’s value 

Conventional representation 
E.g. One-hot representation 

Problems: 

Data sparsity 
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Clustering-based representations 

 Brown clustering (Brown et al., 1992) 

A hierarchical clustering algorithm 

A class-based bigram language model 

Time complexity: O(V*K2) 

V is the size of the vocabulary, K is the number 
of clusters. 

Limitations： 

Only based on bigram statistics 

not consider word usage 
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 also known as word embeddings 

 dense, real-valued, low-dimensional 

 Neural language models 



Distributed representations 

 Collobert and Weston embeddings (2008) 
Neural language model 

Discriminative and non-probabilistic 

General architecture (e.g. SRL, NER, POS 
tagging) 

 Differences on implementation 
Not achieve the low log-rank  

Corrupt the last word for each n-gram 

Learning rates are separated 
 

 



Distributed representation 

 HLBL embeddings(2009) 

Log-bilinear model 

Predict the feature vector of the next word 

Hierarchical structure (binary tree) 

Represent each word as a leaf with a particular 
path 

Calculate the product of the probability of each 
binary choice 



Evaluation tasks 

Chunking: syntactic sequence labeling 

CoNLL-2000 shared task 

CRFsuite 

Data 

The Penn Treebank  

7936 sentences(training) 

1ooo sentences (development) 
 



Evaluation tasks 

NER: sequence prediction problem 

The regularized averaged perceptron 
model (Ratinov and Roth, 2009) 

CoNLL03 shared task 

204k words for training, 51k words for 
development, 46K words for testing 

Out-of-domain dataset: MUC7 formal run 
(59K words) 

 

 



Evaluation---Features 

Chunking NER 



Experiment 

 Unlabeled data 

 RCV1 corpus (63 millions words in 3.3 million sentences) 

 Preprocessing technique(Liang, 2005) 

 Remove all sentences that are less than 90% lowercase a-
z. 
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Summary 

 Word features  
 in an unsupervised, task-inspecific, and model-agnostic 

manner 
 The disadvantage 
 Accuracy might be lower than a task-specific semi-

supervised method  
 The contributions 
 The first work to compare different word representations  
 Combining different word representations can improve 

accuracy further 
 Future work 
 Induce phrase representations 
 Apply to other supervised NLP systems 
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Q&A 

Any questions? 
 

 

 

Thank you！ 

 


