Reading Tea Leaves: How
Humans Interpret Topic
Models



Topic Models

> Used to identify the main themes
in a collection of documents.

> Documents are a collection of
topics. Topics are adistribution
over words.
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Probabilistic Latent Semantic Indexing
(pLSI)

Probability of each co-occurrence is modelled as
a mixture of conditionally independent
multinomial distributions
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Latent Dirichlet Analysis (LDA)

Topic distribution assumed to have a

Dirichlet prior.
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Correlated Topic Model (CTM)

Allows for richer covariance structure
between topic proportions. Uses a logistic
normal prior over topic mixture
proportions.
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Goals & Motivation

> Previously, no measure of
interpretability of this latent space.

> Present a method for measuring
interpretability of topic models
using human evaluation tasks.
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6/10 DOUGLAS_HOFSTADTER

Douglas Richard Hofstadter (born February 15, 1945 in
New York, New York) is an American academic whose
research focuses on consciousness, thinking and

creativity. He is best known for ", first published in
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Results - Word Intrusion

Model Precision

CORPUS TorICS LDA CTM PLSI
50 -7.3214 /78438 -7.3335/788.58 -7.3384/796.43
NEW YORK TIMES 100 -7.2761/778.24  -7.2647/762.16 -7.2834/785.05
150 -7.24771777.32 -7.2467/755.55 -7.2382/770.36
50 -7.5257/961.86 -7.5332/936.58 -7.5378/975.88
WIKIPEDIA 100 -7.4629/935.53  -7.4385/880.30 -7.4748/951.78
150 -7.4266/929.76  -7.3872/852.46 -7.4355/945.29
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Conclusion

> Traditional metrics of evaluation
do not capture whether topics are
coherent.

> When developing topic models we
should now focus on evaluations
which depend on real-world task
performance.
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