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A general purpose model

• Model works with two different types of input: 
natural language, and images 

• Exploits common recursive nature of parsing 

• Works by recursively “merging” components 

• Uses Recursive Neural Network (RNN) (not 
“Recurrent Neural Network”)
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Overview
• Generate general purpose features based on input. 

This is the only “non-general” step 

• Train model on annotated tree data 

• Test the predictor on new data 

• Generates parse trees 

• Use model output to classify data
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Input representations
• Images split into 

segments 

• Features generated for 
segments based on 
texture, colour, and 
shape features (and 
lots more) 

• Use auxiliary neuron for 
each segment:

• Sentence split into 
individual words 

• Features generated for 
words based on co-
occurrence statistics 

• This is not covered by 
the paper :(

Images Sentences
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Structure Prediction

• Learn a function f : X -> Y where Y is the set of 
possible binary trees representing input X. X is split 
into two parts: 

• (i) A set of activation vectors (outputs from 
earlier) 

• (ii) A symmetric adjacency matrix representing 
neighbourhood
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Structure Prediction
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Max Margin Estimation

• A learning framework in which we maximise the 
margin between the best and the rest. More 
specifically, larger than some loss ∆.
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• Loss is measured as the number of merges which 
result in a subtree which doesn’t appear in the training 
data 

• Merge possible neighbours according to loss function:

where N(ˆy) is the set of non-terminal nodes and κ 
is a scaling parameter.

Max Margin Estimation
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Risk Function

• We want a risk function which minimises expected 
loss on an unseen input

• s is a scoring function (high if tree is correct with 
confidence). θ are the parameters needed to 
calculate s
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Risk Function
• As said, we want highest scoring correct tree to be 

better than the rest by a margin defined by the loss 
∆:

• This gives us the regularised risk function:
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Greedy Structure Prediction
• Now we can define RNN to predict the tree 

structures. This takes the two inputs as described 
earlier; the adjacency matrix and the activation 
vectors. This vector is called C
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Greedy Structure Prediction
• Training aims to increase scores of pairs with the same label (unless no more of 

such pairs are left) 

• Generate scores for pairs and select pair with best score.  

• Update C by removing c1;c2 and adding a new segment, with all its 
neighbours (merge) 

• This process is repeated using the same layer until there is only one segment 
remaining
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Greedy Structure Prediction

• Finally have a definition for the scoring function:
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Image Classification

• Simply add softmax neuron layer to predict 
classes:
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Learning
• Using subgradient descent, via backpropagation 

• Use L-BFGS to minimize objective function:
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Results (images)
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• 16 seconds to parse 143 test images on 2.6GHz 
laptop (in matlab though)



Results (images)



Results (Text)
• F-score of language parser is 90.29% compared 

with Berkeley parser: 91.36% 

• Could potentially be improved with larger feature 
vectors 

• 2.6GHz laptop took 72 seconds to parse 421 
sentences of length < 15 

• (again in matlab though)
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Conclusion

• RNNs can do cool stuff! 

• Images and sentences can be treated as similar 
things (and so can any recursively divisible inputs!) 

• Neural Network models can be repurposed fairly 
easily
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Questions?
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