
Parsing Natural Scenes and
Natural Language

with Recursive Neural Networks
Socher et. al

1

Parsing Natural Scenes and
Natural Language

with Recursive Neural Networks
Socher et. al

2

A general purpose model

• Model works with two different types of input:
natural language, and images

• Exploits common recursive nature of parsing

• Works by recursively “merging” components

• Uses Recursive Neural Network (RNN) (not
“Recurrent Neural Network”)

3

4

Overview
• Generate general purpose features based on input.

This is the only “non-general” step

• Train model on annotated tree data

• Test the predictor on new data

• Generates parse trees

• Use model output to classify data

5

Input representations
• Images split into

segments

• Features generated for
segments based on
texture, colour, and
shape features (and
lots more)

• Use auxiliary neuron for
each segment:

• Sentence split into
individual words

• Features generated for
words based on co-
occurrence statistics

• This is not covered by
the paper :(

Images Sentences

6

Structure Prediction

• Learn a function f : X -> Y where Y is the set of
possible binary trees representing input X. X is split
into two parts:

• (i) A set of activation vectors (outputs from
earlier)

• (ii) A symmetric adjacency matrix representing
neighbourhood

7

Structure Prediction

8

Max Margin Estimation

• A learning framework in which we maximise the
margin between the best and the rest. More
specifically, larger than some loss ∆.

9

• Loss is measured as the number of merges which
result in a subtree which doesn’t appear in the training
data

• Merge possible neighbours according to loss function:

where N(ˆy) is the set of non-terminal nodes and κ
is a scaling parameter.

Max Margin Estimation

10

Risk Function

• We want a risk function which minimises expected
loss on an unseen input

• s is a scoring function (high if tree is correct with
confidence). θ are the parameters needed to
calculate s

11

Risk Function
• As said, we want highest scoring correct tree to be

better than the rest by a margin defined by the loss
∆:

• This gives us the regularised risk function:

12

Greedy Structure Prediction
• Now we can define RNN to predict the tree

structures. This takes the two inputs as described
earlier; the adjacency matrix and the activation
vectors. This vector is called C

13

{Input vector C

Output parse tree

Greedy Structure Prediction
• Training aims to increase scores of pairs with the same label (unless no more of

such pairs are left)

• Generate scores for pairs and select pair with best score.

• Update C by removing c1;c2 and adding a new segment, with all its
neighbours (merge)

• This process is repeated using the same layer until there is only one segment
remaining

14

Greedy Structure Prediction

• Finally have a definition for the scoring function:

15

Image Classification

• Simply add softmax neuron layer to predict
classes:

16

wow!

Learning
• Using subgradient descent, via backpropagation

• Use L-BFGS to minimize objective function:

17

Results (images)

18

• 16 seconds to parse 143 test images on 2.6GHz
laptop (in matlab though)

Results (images)

Results (Text)
• F-score of language parser is 90.29% compared

with Berkeley parser: 91.36%

• Could potentially be improved with larger feature
vectors

• 2.6GHz laptop took 72 seconds to parse 421
sentences of length < 15

• (again in matlab though)

20

Conclusion

• RNNs can do cool stuff!

• Images and sentences can be treated as similar
things (and so can any recursively divisible inputs!)

• Neural Network models can be repurposed fairly
easily

21

Questions?

22

