Neural Network Language Modelling

Presentation Outline

- Why language models are important
- N-Gram modelling
- Neural Network Language Models:
 - Feedforward Networks (Bengio et al., 2003)

Recurrent Networks
 (Mikolov et al., 2010)

How are language models useful?

- Evaluate probability of a sequence of words occurring naturally in a text
- Predict the next word given the preceding words

speech recognition:

"wreck a nice beach" vs.
"recognize speech"

N-Gram Modelling

"it's not rocket science"

$$P(w_1, \dots, w_m) \approx \prod_{i=1}^m P(w_i \mid w_{i-(n-1)}, \dots, w_{i-1})$$

when using trigrams (n = 3):

P(it's not rocket science) \approx

P(it's | <s> <s>) P(not | it's, <s>) P(rocket | it's, not) P (science | rocket, not)

N-Gram Modelling "it's not rocket science"

Using MLE to collect n-gram statistics:

$$P(A \mid H) = \frac{count(H + A)}{count(H)}$$

Problem with N-Grams

 They don't make use of longer contexts

"The sky above our heads is blue."

"The sky on a sunny day is blue."

Distributed Representations

Maps input words to a feature space. Closer words are more similar with regard to their features

Input: '1-of-V' coding

Training sentence: "I go to class on Monday" generalizes to...

Feedforward Neural Network

Input layer: 1-of-V encoding

Projection layer: Lower dimensional representation of input

Hidden Layer: where probability calculations occur

Output layer: normalizes probabilities

Feedforward Neural Network

Parameters: weights and feature vectors

$$\theta = (C, \omega)$$

The network can be defined by:

$$P(w_t = k | w_{t-n+1}, \dots w_{t-1}) = \frac{e^{a_k}}{\sum_{l=1}^N e^{a_l}}$$
 "softmax"

where,

$$a_k = b_k + \sum_{i=1}^h W_{ki} \tanh(c_i + \sum_{j=1}^{(n-1)d} V_{ij} x_j)$$

Calculates unnormalized log probabilities for each output word

hidden layer

output layer

normalizes to make probability distribution = 1

Training the network

Find the parameters

$$\theta = (C, \omega)$$

that maximize log probability of the training corpus

$$L = \frac{1}{T} \sum_{t} \log f(w_t, w_{t-1}, \cdots, w_{t-n+1}; \theta) + R(\theta)$$

$$\frac{\partial L}{\partial \theta}$$

Experiment

- Trained on 800,000 words in Brown corpus
- -24% lower perplexity than modified Kneser-Kney
- Context length of 5 worked best for the feedforward model
- Trigrams worked best for the Kneser-Kney

Do feedforward networks really make use of longer contexts?

Recurrent Neural Networks

The hidden layer of RNN represents all previous history and not just (n-1) previous words

NPUT (t) OUTPUT (t)

No projection layer

More RNN

Input into the RNN is a 1-to-V word encoding + the previous state:

$$x(t) = w(t) + s(t-1)$$

Hidden layer uses a sigmoid function $f(z) = \frac{1}{1 + e^{-z}}$ to calculate unnormalized probabilites:

$$s_j(t) = f\left(\sum_i x_i(t)u_{ji}\right)$$

Output layer normalizes with softmax function:

$$g(z_m) = \frac{e^{z_m}}{\sum_k e^{z_k}}$$
 $y_k(t) = g\left(\sum_j s_j(t)v_{kj}\right)$

Training RNN

error(t) = desired(t) - y(t)

desired = word that should have been predicted in a particular context

y = actual word that was predicted

Use Back Propagation Through Time:

Experiments

- speech recognition task
- RNN trained on 6.4M words from NYT section of English Gigaword

(300k sentences - takes several weeks)

• Other models trained on 37M words

Table 2: Comparison of various configurations of RNN LMs and combinations with backoff models while using 6.4M words in training data (WSJ DEV).

	PPL		WER	
Model	RNN	RNN+KN	RNN	RNN+KN
KN5 - baseline	-	221	-	13.5
RNN 60/20	229	186	13.2	12.6
RNN 90/10	202	173	12.8	12.2
RNN 250/5	173	155	12.3	11.7
RNN 250/2	176	156	12.0	11.9
RNN 400/10	171	152	12.5	12.1
3xRNN static	151	143	11.6	11.3
3xRNN dynamic	128	121	11.3	11.1

Nearly 50% PPL reduction!

Experiment 2

NIST RT05 data set

- RNN 5.4M words
- Other models trained over 100x more data

Table 4: Comparison of very large back-off LMs and RNN LMs trained only on limited in-domain data (5.4M words).

Model	WER static	WER dynamic
RT05 LM	24.5	-
RT09 LM - baseline	24.1	-
KN5 in-domain	25.7	-
RNN 500/10 in-domain	24.2	24.1
RNN 500/10 + RT09 LM	23.3	23.2
RNN 800/10 in-domain	24.3	23.8
RNN 800/10 + RT09 LM	23.4	23.1
RNN 1000/5 in-domain	24.2	23.7
RNN 1000/5 + RT09 LM	23.4	22.9
3xRNN + RT09 LM	23.3	22.8

questions...?

