Retrospective overview

Topics in Cognitive Modelling
Chris Lucas
John Lee
March 22, 2016

Goals of this course (I)

- Examine the Big Questions of cognitive science through the lens of computational modelling
 - Is cognition a collection of separate domain-specific abilities or an interacting whole?
 - · How much of cognition is innate?
 - Are mental representations symbolic or distributed?
 - · Are mental processes based on rules or associations?
 - To what extent are our cognitive abilities determined by our physical body and environment, i.e., grounded/embodied?

2

Goals of this course (I)

Is cognition a collection of separate domain-specific abilities or an interacting whole?

3

Goals of this course (I)

Pro-modularity:

- Itti, Koch & Niebur (1998): vision-specific features, no top-down control or outside information.
- Plunkett: labels are special
- Also: UG + parameters account of language learning

(Few of the papers we've read argue for strong modularity)

.

Goals of this course (I)

Pro-domain-generality:

- · Grammar learning
 - Chunking and memory limitations (MOSAIC)
 - Hierarchical structure (Bannard et al.)
- · Categorization and development
 - Categories emerge from statistics (French et al.)
 - No special status for labels (Gliozzi)

[and more, e.g., shape bias]

Goals of this course (I)

How much of cognition is innate?

We can frame this with the bias-variance trade-off, so the question becomes "What is the bias?"

Goals of this course (I)

Higher bias: less sensitive to experience.

Extreme cases:

- Imprinting
- "Fixed action patterns" like egg-rolling

- Itti et al. (1998): Static features and computations
- Quillian's hierarchical categories.
- · Another example: "function learning", where models assume strong linearity bias.
 Tinbergen, 1951;Lorenz, 1937

Goals of this course (I)

High-variance:

- Behavior/inferences highly sensitive to input.
- · Accurate generalization requires more data.

Examples:

- French et al. (2004): categories due to distributional properties in environment, not prior knowledge.
- Gopnik et al. (2004): "causal maps" depend on experience plus small set of assumptions.
 - · Contrast: Michotte (1963).
- · Many connectionist models.

Goals of this course (I)

Are mental representations symbolic or distributed? Are mental processes based on rules or associations?

- Connectionist models: Distributed [mostly]! Associations!
- [Traditional] algorithmic models: Rules!
- Probabilistic models: Varies sometimes all of the above.

Not necessarily a hard distinction between these rules and associations: one can be mapped onto another.

Goals of this course (I)

To what extent are our cognitive abilities grounded/embodied?

- · We didn't cover this much. Further reading:
 - · Clark (1999): Review in TiCS with a computational focus
 - Wilson (2002): Popular & high-level review

Goals of this course (2)

- Learn about different modelling approaches and how they relate to these Big Questions
 - Connectionist
 - Bayesian/probabilistic
 - · Algorithmic/mechanistic
 - Dynamical systems
 - · Cognitive architectures

Goals of this course (2)

Connectionist approaches

- Distributed, [kind of] domain-general.
- · Biases not always clear
- · Appeal to neural plausibility
 - · Some cases are more convincing than others
- New applied work (e.g., deep belief nets) and neurobiological results (imaging, multi-unit recording...)

Goals of this course (2)

Bayesian/probabilistic approaches

- Usually expressed as computational-level models (Marr, 1982)
 - Complementary to algorithmic and neural explanations
- Bias tends to be explicit.
 - Though prior, likelihood, decision rules interact may not be identifiable
- · Associated with assumptions of rationality/optimality
 - Recent trend: reconciling Bayesian models with time/memory limitations (e.g., Sanborn et. al, 2010); inference by sampling

13

Goals of this course (2)

Algorithmic/mechanistic approaches

- Specify the processes by which mental representations are updated or constructed.
- Prior to connectionism, not many alternatives
- Bayesian and connectionist approaches entail algorithms, but often don't commit to particular choices.
- Typically use rules and symbols.

14

Goals of this course (2)

Dynamical systems approaches

- The mind as a system with state that evolves over time.
- Example: Elman's simple recurrent networks (Grammar).
- Other examples (not covered):
 - "Decision field" model of decision-making
 - · Infant perseverative reaching

trends in Cognitive Scien Figure: Beer, 2000

(Beer, 2000; Roe et al., 2001; Thelen et al., 2001)

Goals of this course (2)

Cognitive architecture approaches

- Frameworks rather than specific models.
- Most are mechanistic, but connectionist and probabilistic approaches exist.
- Like Bayesian or connectionist frameworks as a whole, architectures like ACT-R aren't generally falsifiable.

40

Goals of this course (2)

Cognitive architecture approaches

Examples:

- ACT-R
 - Used in Ragni et al. (Reasoning)
 - · Production system: rules fire when conditions are satisfied
 - Current focus on neural correlates
- CHREST
 - Used in Freudenthal et al. (Grammar)
 - · Used to model many phenomena in language

17

Other themes & questions

The importance of representation

- Choices among representations (e.g., Lachter & Bever's TRICS*, 1988)
- · Where do features/inputs come from?
 - Active work in this field (e.g., Austerweil & Griffiths, 2013)

* "The representations it crucially supposes"

Other themes & questions

Other assumptions in models

- · Objectives and loss functions
 - Error/output representation in connectionist models
 - Decision rules in Bayesian models
- Architectures of connectionist models
 - Numbers of nodes? Connectivity? Learning rules? Input encoding?
- · Priors and likelihood functions in Bayesian models
 - · Informative priors as testable theoretical claims
 - · Often justified, trained, or estimated independently

19

Other themes & questions

What makes a model better?

- · Fewer ad-hoc aspects/degrees of freedom
- Predictive accuracy
- Generality
- · Resource demands & scalability
- Compatibility with other evidence, e.g., neuroscience

Not always simple! Parsimony is subjective; real predictions often elusive.

20

Other themes & questions

What makes a model evaluation convincing?

- · Scope: many data points, different kinds of evidence
- Specific **predictions** (not just post-hoc explanations)
- Examining assumptions
- Explicit comparisons to alternative models

Discussion

Thoughts?

22

21

References

Anderson, J.R. and Bothell, D. and Byrne, M.D. and Douglass, S. and Lebiere, C. and Qin, Y. 2004. An integrated theory of the mind. Psychological review 111(4), 1036-1060.

Austerweil, J. and Griffiths, T. (2013). A nonparametric Bayesian framework for constructing flexible feature representations. *Psychological Review, 120* (4), 817-851

Beer, Randall D. "Dynamical approaches to cognitive science." Trends in cognitive sciences $4.3 \, (2000)$: 91-99.

Clark, A. 1999. <u>An embodied cognitive science?</u> Trends in Cognitive Sciences 3, 345-351.

Lachter, Joel, and Thomas G. Bever. "Therelation between linguistic structure and associative theories of language learning—A constructive critique of some connection ist learning models." *Cognition* 28.1 (1988):195-247.

Lorenz, Konrad Z. "The companion in the bird's world." The Auk (1937): 245-273.

References

Roe, Robert M., Jermone R. Busemeyer, and James T. Townsend. "Multialternative decision field theory: Adynamic connectionst model of decision making." Psychological review108.2 (2001):370.

Sanborn, A.N., Griffiths, T.L., & Navarro, D.J. (2010). Rational approximations to rational models: alternative algorithms for category learning. *Psychological review*, 117(4). 1144

Thelen, Esther, et al. "The dynamics of embodment. A field theory of infant perseverative reaching." Behavioral and brain sciences 24.01 (2001): 1-34.

Tinbergen, N. (1951). The Study of Instinct Oxford University Press, New York Wilson, Margaret "Six views of embodied cognition." Psychanomic bulletin & review 9.4 (2002):625-636.

Image attribution

Greylag Goose: http://en.wikipedia.org/wiki/File:GreylagGooseProfile.jpg