Comparing models

Topics in Cognitive Modelling

John Lee, Chris Lucas School of Informatics University of Edinburgh {jlee,clucas2}@inf.ed.ac.uk

How do can we compare models?

What makes one model or theory better than another?

- · Explanatory completeness
- Predictive accuracy
- · Being understandable

2

How do can we compare models?

What makes one model or theory better than another?

- Explanatory completeness
- Predictive accuracy
- · Being understandable

3

Explanatory completeness

Generality

A good model accurately explains many results

- · Fits data from many experiments
- · Captures qualitatively different phenomena

Precision

A good model is precise

• Specific predictions, less wiggle room

Generality

E.g., for physical forces and particles:

Electricity

Classical electromagnetism (+ magnetism)

Quantum electrodynamics (+quantum phenomena)

Standard model (+ nuclear forces)

"Theory of everything"

(gravity, dark matter, dark energy ...)

Precision

Beware vagueness!

- "Stuff happens" is a hypothesis, but vague one.
- Better: "X is related to Y."
- Better: "As X increases, Y will decrease."
- Better: "As X increases, Y will decrease according to the following function ..."

Probability theory lets us be precise about precision: $P(\textbf{m}odel|\textbf{d}ata) \ \propto \ P(\textbf{m})P(\textbf{d}|\textbf{m})$

6

Explanatory completeness

- We don't want models that just explain data after the fact!
- Rather, we want models that do well on the enormous variety of cases we haven't yet seen.

That is, predictive accuracy.

How do can we compare models?

What makes one model or theory better than another?

- Explanatory completeness
- · Predictive accuracy
- Being understandable

12

Predictive accuracy

Straightforward in principle:

- 1. Make predictions
- 2. Collect data
- 3. Evaluate model
- 4. Publish results

13

Predictive accuracy

Difficult in practice:

- 1. Publication bias
- 2. |old data| >> |new data|
- 3. Choosing criteria/loss functions
- 4. Free parameters

14

Predictive accuracy

Can we estimate predictive accuracy using old data?

- Cross-validation
- "Information criteria"

15

Cross-validation

- 1. Partition the data into training and validation sets
- 2. Fit the model on the training data
- 3. Get the probability* of the validation data under the fitted model.
- 4. Repeat steps for non-overlapping validation sets until all of the data have been covered.

16

Cross-validation

Issues:

- Can be computationally expensive
- · Are cross-validation test sets like new cases?

Information criteria

Lower scores are better; generally

score = badness of fit + complexity penalty.

Most common badness of fit = $-log(P(D|M,\theta_{MLE}))$

i.e., negative log likelihood of data given model, using likelihood-maximising parameters $\theta_{\rm MLE}.$

Perfect fit, e.g., $P(D|M,\theta_{MLE})=1 \rightarrow badness of fit=0$.

18

Information criteria

Different criteria vary by their complexity terms and goals:

d model with best d-1-out cross idation accuracy ^{1,2} d model with	-2*log(P(D M,0MLE))	2*k (k = # of params)
d model with	0*!(D(D)M(0+=))	
hest bability ^{1,2,3}	-2*log(P(D M,θMLE))	k*log(n) (n = # data points)
e AIC, but applies re generally	-log(P(D M)) ⁴	Effective # params See (Wantanabe, 2010)
E	AIC, but applies e generally	e AIC, but applies -log(P(D M)) 4

Information criteria

Issues:

- · Assumptions often aren't true
 - Sometimes a model is insensitive to a parameter or parameters are partially redundant
 - · Sometimes a single parameter hides enormous flexibility
 - Sometimes parameters are hidden
- Criteria with weaker assumptions are sometimes intractable to compute (e.g., WAIC)

20

How do can we compare models?

What makes one model or theory better than other?

- Explanatory completeness
- Predictive accuracy
- · Being understandable

21

Being understandable

- Part of a model's value is as a foundation for other models and theories.
- If we want to *understand* human cognition, then incomprehensible models aren't useful.
- One criterion: can a sophisticated person implement the model from a description?

22

Conclusions

Models are better when they're more

- General
- Precise
- · Predictively accurate
- Parsimonious
- Comprehensible

Some of these notions can be expressed formally, e.g., using probability theory.

They should complement, rather than replace, your intuitions about how plausible, useful, or reasonable a model is.

23

References and further reading

Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predctive information criteria for Bayesian models. Statistics and Computing, 24(6), 997-1016.

Jeffreys, W. H., & Berger, J. O. (1992). Ockham's Razor and Bayesian analysis. American Scientist, 80(1), 64–72.

Shepard, R. N. (1987). Towardsa universal law of generalization for psychological science. Science, 237, 1317–1323.

Watanabe, S. (2010). Asymptotic equivalence of Bayes α oss validation and widely applicable information criterionin singular learning theα y. The Journal of Machine Learning Research, 11,3571–3594.