

Semantic Web Systems Description Logics & OWL

Jacques Fleuriot School of Informatics

In the previous lecture

- Merging graphs that contain blank nodes can be problematic.
- SPARQL OPTIONAL.

```
Query

PREFIX info: <http://somewhere/peopleInfo#>.

PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>.

SELECT ?name ?age

WHERE

{

?person vcard:FN ?name.

OPTIONAL { ?person info:age ?age.}

}
```


In the previous lecture

- Linked Data principles
 - Naming things with URIs.
 - Making URIs dereferenceable.
 - Providing useful RDF information.
 - Including links to other things.

In this lecture

- More expressive languages for building sophisticated ontologies.
- Description Logics.
- OWL.

Description Logics

- Description Logics
 - allow formal concept definitions to be expressed,
 - in a form that allows reasoning.
- Example concept definitions:
 - Woman ≡ Person □ Female
 - Man ≡ Person □ ¬Woman
- Not a single logic, but a family of KR logics.
- Subsets of first-order logic.
- Well-defined model theory.
- Known computational complexity.

Description Logics

- A classifier (a reasoning engine) can be used to construct the class hierarchy from the definitions of individual concepts in the ontology.
- Concept definitions are composed from primitive elements and so the ontology is more maintainable.

Description Logic Terminology

- Description Logics separate assertions and concept definitions:
- **A Box**: Assertions
 - e.g. hasChild(john, mary).
 - This is the knowledge base (KB).
- **T Box**: Terminology
 - The definitions of concepts in the ontology
 - Example axioms for definitions
 - C
 D [C is a subclass of D, D subsumes C]
 - $C \equiv D$ [C is defined by the expression D]

Description Logic Terminology

- Concept: class, category or type
- Role: binary relation
 - Attributes are functional roles
- Subsumption:
 - D subsumes C if C is a subclass of D i.e. all Cs are Ds
- Unfoldable terminologies:
 - The defined concept does not occur in the defining expression:
 - $C \equiv D$ where C does not occur in the expression D.
- Language families
 - AL: Attributive Language
 - ALC adds full negation to AL

Language Elements for Concept Expressions

Symbol	Description	Example	Read
Т	all concept names	Т	top
\bot	empty concept	\perp	bottom
Π	intersection or conjunction of concepts	$C \sqcap D$	C and D
Ц	union or disjunction of concepts	$C \sqcup D$	C or D
7	negation or complement of concepts	$\neg C$	not C
\forall	universal restriction	$\forall R.C$	all R-successors are in C
Э	existential restriction	$\exists R.C$	an R-successor exists in C
	Concept inclusion	$C \sqsubseteq D$	all C are D
=	Concept equivalence	$C \equiv D$	C is equivalent to D
÷	Concept definition	$C \doteq D$	C is defined to be equal to D
:	Concept assertion	a:C	a is a C
:	Role assertion	(a,b):R	a is R-related to b

Universal restriction

Universal restriction - also called value restriction: ∀R.C

The set $\{x | \forall y, R(x, y) \Rightarrow y \in C\}$

The set of things x such that for all y where x and y are related by R, y is in C.

- e.g. \forall hasChild.Doctor i.e. {x| \forall y, hasChild(x, y) \Rightarrow y \in Doctor}
 - The set of individuals **all** of whose children are doctors.
 - That is, anything that is the object of the relation hasChild must be in class Doctor, regardless of what the subject is.
 - Note that this set includes anyone who has **no** child! Why?

Existential restriction

• Existential restriction - also called exists restriction: $\exists R.C$

The set $\{x | \exists y, R(x, y) \land y \in C\}$

The set of things x such that there exists a y where x and y are related via R and y is in class C.

- e.g. \exists hasChild.Doctor i.e. {x | \exists y, hasChild(x, y) \land y \in Doctor}
 - The set of individuals with at least one child who is a doctor.
 - The set is empty if no one is a parent or if no parent has a child who is a doctor.

Description Logic naming

Three basic logics:

- \mathcal{AL} Attributive language basic language which allows:
 - atomic negation
 - concept intersection
 - universal restrictions
 - limited existential quantification
- \mathcal{FL} Frame based description language, allows:
 - concept intersection
 - universal restrictions
 - limited existential quantification
 - role restriction
- \mathcal{EL} allows:
 - concept intersection
 - existential restrictions (of full existential quantification)

Description Logic naming

Followed by any of the following extensions:

- ${\cal F}\,$ Functional Properties
- ${\cal E}$ Full existential qualification (Existential restrictions that have fillers other than owl:Thing).
- ${\mathcal U}$ Concept union.
- ${\mathcal C}$ Complex concept negation.
- ${\cal H}\,$ Role hierarchy (subproperties rdfs:subPropertyOf).
- ${\cal R}\,$ Limited complex role inclusion axioms; reflexivity and irreflexivity; role disjointness.
- \mathcal{O} Nominals. (Enumerated classes of object value restrictions owl:oneOf, owl:hasValue).
- \mathcal{I} Inverse properties.
- \mathcal{N} Cardinality restrictions (owl:cardinality, owl:maxCardinality).
- ${\cal Q}$ Qualified cardinality restrictions (available in OWL 2, cardinality restrictions that have fillers other than owl:Thing).
- $\mathcal{D})$ Use of datatype properties, data values or data types.

Description Logic naming

Some canonical DLs that do not exactly fit this convention are:

- S An abbreviation for ALC with transitive roles.
- \mathcal{FL}^{-} A sub-language of \mathcal{FL} , which is obtained by disallowing role restriction. This is equivalent to \mathcal{AL} without atomic negation.
- \mathcal{FL}_o A sub-language of \mathcal{FL}^- , which is obtained by disallowing limited existential quantification.

 \mathcal{FL}^{++} Alias for \mathcal{FLRO}

Common DLs

- *ALC* is the most common DL. It is *AL* with complement of any concept allowed, **not just atomic concepts**.
- SHIQ is the logic ALC plus extended cardinality restrictions, and transverse and inverse roles.
- The Protégé editor supports $SHOIN^{(D)}$
- OWL-2 provides the expressiveness of $SROIQ^{(D)}$
- OWL-DL is based on $SHOIN^{(D)}$
- OWL-Lite is based on $S\mathcal{HIF}^{(\mathcal{D})}$

Example concept expressions

- Parent ≡ "Persons who have (amongst other things) some children"
 - Person □ ∃ hasChild.⊤
- ParentOfBoys ≡ "Persons who have some children, and only have children that are male"
 - Person \sqcap (\exists hasChild. \urcorner) \sqcap (\forall hasChild.Male)
- ScottishParent ≡ "Persons who only have children who drink (amongst other things) some IrnBru"
 - Person □ (∀hasChild. (∃drink.lrnBru))

Value and exists restrictions

{a, b, c, d, e, f} are instances; Plant and Animal are classes

Value and exists restrictions

{a, b, c, d, e, f} are instances; Plant and Animal are classes

 \exists eats.Animal = {c, d, e} \forall eats.Animal = {a, b, c, e, f} \exists eats.Animal $\sqcap \forall$ eats.Animal = {c, e}

Model theory

 Δ^{I} universal domain of individuals, let

 $\Delta^{|}=\{a, b, c, d, e, f\}$

eats^I set of pairs for the relation eats, let

eats^I = {<d,a>,<d,e>,<e,d>,<e,f>,<c,f>}

For all concepts C:

i) $C^{I} \subseteq \Delta^{I}$

ii) C^I≠∅

Let Animal^I = {d, e, f}

∴ (¬Animal)^I = {a, b, c}

- \therefore (\forall eats.Animal)^I = {a, b, c, e, f}
- \therefore (\exists eats. Animal)^I = {c, d, e}

Inference

```
MeatEater \equiv \forall eats. Animal = {a, b, c, e, f}
Vegetarian \equiv \forall eats. \negAnimal = {a, b, f}
Omnivore \equiv \exists eats. Animal = {c, d, e}
```

Inference:

From the above classes we can see that:

- MeatEater subsumes Vegetarian
- Vegetarian is disjoint from Omnivore

in this model, with these definitions.

The problem is to prove this for ALL models.

Value and exists restrictions

{a, b, c, d, e, f} are instances; Plant and Animal are classes

Vegetarian = $\{a, b, f\}$ Omnivore = $\{c, d, e\}$ disjoint? MeatEater = {a, b, c, e, f}

DL Inference

- Inference can be expressed in terms of the model
 - Satisfiability of C: C^I is non-empty
 - Subsumption: $C \sqsubseteq D$ iff $C^{I} \subseteq D^{I}$ ("C is subsumed by D")
 - Equivalence: $C \equiv D$ iff $C^{\dagger} = D^{\dagger}$
 - **Disjointness:** $(C \sqcap D) \sqsubseteq \bot \text{ iff } C^{I} \cap D^{I} \equiv \emptyset$
- Tractable/terminating inference algorithms exist

Semantic Web Systems: DL & OWL

DL Inference

MeatEater $\equiv \forall$ eats. Animal Vegetarian $\equiv \forall$ eats. \neg Animal Omnivore $\equiv \exists$ eats. Animal

DL inference

Inference has 2 equivalent notions – so implementing one lets us prove all 4 properties

- Reduction to subsumption □:
 - Unsatisfiability of C: C $\sqsubseteq \bot$
 - Equivalence: $C \equiv D$ iff $C \equiv D$ and $D \equiv C$
 - Disjointness: $(C \sqcap D) \sqsubseteq \bot$
- Reduction to unsatisfiability $C^{I} = \emptyset$:
 - Subsumption: $C \sqsubseteq D$ iff $(C \sqcap \neg D)$ is **unsatisfiable** i.e. $C \sqcap \neg D \sqsubseteq \bot$
 - Equivalence: C=D iff (C $\sqcap \neg$ D) and (D $\sqcap \neg$ C) are unsatisfiable
 - Disjointness: (C ⊓ D) is unsatisfiable

DL Summary

- DLs are a family of languages based on subsets of firstorder logic.
 - The level of expressivity depends on the attributes of the language.
 - Attributes are indicated by letters; DL language names consist of a series of these letters. The expressivity of any DL language can therefore be inferred from its name.
- DLs allow complex expressions of how concepts relate to one another.
- There are many algorithms (e.g. Tableaux Algorithms) that allow efficient reasoning over DLs.

Semantic Web Systems: DL & OWL

OWL

Web Ontology Language: OWL

- Web Ontology Language (OWL) is W3C Recommendation for an ontology language for the web
 - Has an XML syntax
- OWL is layered on RDF and RDFS (other W3C standards)
 - Conforms to the RDF/RDFS semantics
 - OWL has 3 versions:
 - OWL-Lite the simpler OWL DL
 - OWL-DL more expressive DL
 - OWL-Full not confined to DL, closer to FOL
 - OWL DLs extend ALC
 - Allow instances to be represented (A Box)
 - Provides datatypes
 - Provides number restrictions
- OWL 1.1 and 2 extend OWL DL

OWL Object Properties

OWL makes a distinction between Object types and Datatypes Object types and Object properties are the same as in ALC

CN, DN	Atomic concepts	Non-empty sets CN ^I , DN ^I ⊆ ∆ ^I
上 ¹	owl:Nothing	φ
T۱	owl:Thing	Δ^{I}
(ר) ^ו	Full Negation	Δ ¹ \ C ¹
(C ∐ D)'	Union	C ^I ∪D ^I
(C ∏ D) ⁱ	Intersection	C'∩ D'
(∀R.C) ^I	Value restriction	$\{\mathbf{x} \in \Delta^{I} \mid \forall \mathbf{y} < \mathbf{x}, \mathbf{y} > \in R^{I} \Rightarrow \mathbf{y} \in C^{I}\}$
(3R.C) ^I	Full existential quantification	$\{x \in \Delta^{I} \mid \exists y < x, y > \in R^{I} \land y \in C^{I}\}$

Terminological axioms: Inclusions and equalities

Concepts: $C \sqsubseteq D$ iff $C^{I} \subseteq D^{I}$

C≡D iff C^I= D^I

OWL Datatypes

Datatypes Δ_{D}^{I} are distinct from Object types Δ^{I} .

- A datatype relation U, e.g. age, relates an object type, e.g. Person to an integer
 - ∃ age.Integer (the set of things that have some Integer as age)
- Datatypes correspond to XML Schema types
- OWL also provides hasValue: U:v to represent specific datatype values
 - age:29 (the set of things age 29)

D	Data Range	D'⊆∆ _D '
(AN'D) _I	Value restriction	$\{\mathbf{x} \in \Delta^{I} \mid \forall \mathbf{y} < \mathbf{x}, \mathbf{y} > \in U^{I} \Rightarrow \mathbf{y} \in D^{I}\}$
'(D.UE)	Full existential quantification	$\{\mathbf{x} \in \Delta^{I} \mid \exists \mathbf{y} < \mathbf{x}, \mathbf{y} > \in U^{I} \land \mathbf{y} \in D^{I}\}$

29

OWL Number Restrictions

OWL adds (unqualifying) number restrictions to ALC

- ≥ n R
 - Defines the set of instances, x, for which there are n or more instances, y, such that R(x, y)
 - BusyParent $\equiv \geq 3$ hasChild
- ≤ n R
 - Defines the set of instances, x, for which there are n or less instances, y, such that R(x, y)

≥ n R	Minimum cardinality	$\{\mathbf{x} \in \Delta^{I} \mid \#(<\!\mathbf{x},\!\mathbf{y}\!\!> \in R^{I}) \geq n \}$
≤ n R	Maximum cardinality	{x ∈ ∆ ^I #(<x,y> ∈ R^I) ≤ n }</x,y>

30

Datatypes Δ^{I}_{D} and Object types Δ^{I}

BN, CN	Non-empty sets BN ^I , CN ^I ⊆∆ ^I	
D	$D^{I} \subseteq \Delta_{D}^{I}$	
(B ⊔ C) ^ı	$\{\mathbf{x} \in \Delta^{I} \mid \mathbf{x} {\in} B^{I} \lor \mathbf{x} {\in} C^{I}\}$	
(В п С) ^і	$\{\mathbf{x} \in \Delta^{I} \mid \mathbf{x} \in B^{I} \land \mathbf{x} \in C^{I}\}$	
(∀R.C) ^ı	$\{\mathbf{x} \in \Delta^{I} \mid \forall \mathbf{y} \; (\langle \mathbf{x}, \mathbf{y} \rangle \in R^{I} \Rightarrow \mathbf{y} \in C^{I})\}$	
(3R.C) ^I	$\{\mathbf{x} \in \Delta^{I} \mid \exists \mathbf{y} < \mathbf{x}, \mathbf{y} > \in R^{I} \land \mathbf{y} \in C^{I}\}$	
(YU.D) ^I	$\{\mathbf{x} \in \Delta^{I} \mid \forall \mathbf{y} \; (\langle \mathbf{x}, \mathbf{y} \rangle \in U^{I} \Rightarrow \mathbf{y} \in D^{I})\}$	
(JU.D) ⁱ	$\{\mathbf{x} \in \Delta^{I} \mid \exists \mathbf{y} < \mathbf{x}, \mathbf{y} > \in U^{I} \land \mathbf{y} \in D^{I} \}$	

OWL-DL Cardinality

BN, CN	Non-empty sets BN ^I , CN ^I ⊆∆ ^I
(∀R.C) ^ı	$\{\mathbf{x} \in \Delta^{I} \mid \forall \mathbf{y} \; (< \mathbf{x}, \mathbf{y} > \in R^{I} \Rightarrow \mathbf{y} \in C^{I})\}$
(JR.C) ^I	$\{\mathbf{x} \in \Delta^{I} \mid \exists \mathbf{y} < \mathbf{x}, \mathbf{y} > \in R^{I} \land \mathbf{y} \in C^{I}\}$
(≥ n R) ^ı	{x ∈ Δ ^I #(<x,y> ∈ R^I) ≥ n }</x,y>
(≤nR) ^ı	{x ∈ Δ ⁱ #(<x,y> ∈ Rⁱ) ≤ n }</x,y>

OWL-DL Cardinality

Bicycle $\equiv \geq 2$ hasWheel $\sqcap \leq 2$ hasWheel $\sqcap \forall$ hasPart. \neg Engine

- Unicyles would have 1 wheel, tricycles 3 wheels, motorcycles would have 2 wheels and an Engine.....
- hasWheel is needed, rather than hasPart, as OWL-DL cannot specify the type of the range to be Wheel
 - Define hasWheel a subProperty of hasPart
 - Range of hasWheel: Wheel

OWL domain and range axioms

Domain and range specifications domain(R, C) :: $(\geq 1 R) \sqsubseteq C$

Consider:

1) ∃ hasChild.Male : anything with a male child

2) Person \sqcap \exists hasChild.Male : person with a male child:

The Person intersection in 2) is implicit in 1) if the domain of hasChild is defined as Person

range(R, C) :: $\neg \sqsubseteq \forall R.C$

OWL abstract syntax

- The ALC-style syntax is not suitable for the WWW
- OWL needs to conform to the RDF/XML syntax

OWL/ALC DL Syntax		OWL Abstract Syntax
(¬C)	Full Negation	< complementOf C >
(C ∐ D)	Union	< unionOf C D >
(C 🗆 D)	Intersection	< intersectionOf C D >
(∀R.C)	Value restriction	< Restriction < onProperty R > < allValuesFrom C >>
(JR.C)	Full existential quantification	< Restriction < onProperty R > < someValuesFrom C >>
(С П D) = ⊥	Disjoint concepts	< disjoint C D >
C⊑D	Subclass of /subsumes	< C <subclassof d="">></subclassof>
C ≡D	Equivalent	<c <equivalentclass="" d="">></c>

OWL in RDF/XML format (not examinable)

Class definitions C ⊑ D and Property restrictions ∀R.C in RDF/XML syntax: DieselEngine is a subclass of Engine: DieselEngine ⊑ Engine <owl:Class rdf:ID ="DieselEngine">

<rdfs:subClassOf rdf:resource="&base;Engine"/>

</owl:Class>

CarPart is a subclass of the parts of the Car: CarPart ⊑ ∀ partOf.Car <owl:Class rdf:ID="CarPart">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="&base;partOf"/>

<owl:allValuesFrom rdf:resource="#Car"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class> is used to specify the rdf:type

rdf:ID introduces new terms (compare with rdf:about to refer to terms) & base; is a namespace (assumed to be defined) 36

OWL in RDF/XML format (not examinable)

CarEngine is equivalent to the intersection of Engine and \forall partOf.Car : CarEngine \equiv Engine $\sqcap \forall$ partOf.Car <owl:Class rdf:ID="CarEngine"> <owl:equivalentClass>! <owl:Class> <owl:intersectionOf rdf:parseType="Collection"> <owl:Class rdf:about="#Engine"/> <owl:Restriction> <owl:onProperty rdf:resource="&base;partOf"/> <owl:allValuesFrom rdf:resource="#Car"/> </owl:Restriction> </owl:intersectionOf> </owl:Class> </owl:equivalentClass> </owl:Class> Protégé reads and writes this syntax.

Use HP's Jena toolkit in Java applications that need to read/write/ $_{\rm 37}$ manipulate RDF/S or OWL.

OWL Summary

OWL:

- Is a web-compatible ontology language
- Syntax based on RDF/XML
- Semantics compatible with RDF and RDFS
- OWL-Lite and OWL-DL have a formal interpretation based on DLs
- Extensive documentation at http://www.w3c.org
- Editing Tools: Protégé 4

Reading

- Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. *From SHIQ and RDF to OWL: The making of a web ontology language*.
 J. of Web Semantics, 1(1):7-26, 2003.
- Non-compulsory additional reading: SWWO Ch11 & Ch12

Task

- Write down a few universal and existential restriction statements in DL.
- Add some OWL cardinality restriction statements.